These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 9675278)
1. Specificity of human cathepsin G. Polanowska J; Krokoszynska I; Czapinska H; Watorek W; Dadlez M; Otlewski J Biochim Biophys Acta; 1998 Jul; 1386(1):189-98. PubMed ID: 9675278 [TBL] [Abstract][Full Text] [Related]
2. New, sensitive fluorogenic substrates for human cathepsin G based on the sequence of serpin-reactive site loops. Réhault S; Brillard-Bourdet M; Juliano MA; Juliano L; Gauthier F; Moreau T J Biol Chem; 1999 May; 274(20):13810-7. PubMed ID: 10318785 [TBL] [Abstract][Full Text] [Related]
3. Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases. Grzesiak A; Helland R; Smalås AO; Krowarsch D; Dadlez M; Otlewski J J Mol Biol; 2000 Aug; 301(1):205-17. PubMed ID: 10926503 [TBL] [Abstract][Full Text] [Related]
4. The 1.8 A crystal structure of human cathepsin G in complex with Suc-Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite specificities. Hof P; Mayr I; Huber R; Korzus E; Potempa J; Travis J; Powers JC; Bode W EMBO J; 1996 Oct; 15(20):5481-91. PubMed ID: 8896442 [TBL] [Abstract][Full Text] [Related]
5. Mapping of the substrate binding site of human leukocyte chymotrypsin (cathepsin G) using tripeptidyl-p-nitroanilide substrates. Szabó G; Tözsér J; Aurell L; Elödi P Acta Biochim Biophys Hung; 1986; 21(4):349-62. PubMed ID: 3109179 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of chymotrypsin-inhibitor/substrate interactions by 3 M NaCl. Wesołowska O; Krokoszyńska I; Krowarsch D; Otlewski J Biochim Biophys Acta; 2001 Feb; 1545(1-2):78-85. PubMed ID: 11342033 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic criterion for the conformation of P1 residues of substrates and of inhibitors in complexes with serine proteinases. Qasim MA; Lu SM; Ding J; Bateman KS; James MN; Anderson S; Song J; Markley JL; Ganz PJ; Saunders CW; Laskowski M Biochemistry; 1999 Jun; 38(22):7142-50. PubMed ID: 10353824 [TBL] [Abstract][Full Text] [Related]
9. Molecular modeling and substrate specificity of discrete cruzipain-like and cathepsin L-like cysteine proteinases of the human blood fluke Schistosoma mansoni. Brady CP; Brinkworth RI; Dalton JP; Dowd AJ; Verity CK; Brindley PJ Arch Biochem Biophys; 2000 Aug; 380(1):46-55. PubMed ID: 10900131 [TBL] [Abstract][Full Text] [Related]
10. Binding of amino acid side-chains to S1 cavities of serine proteinases. Lu W; Apostol I; Qasim MA; Warne N; Wynn R; Zhang WL; Anderson S; Chiang YW; Ogin E; Rothberg I; Ryan K; Laskowski M J Mol Biol; 1997 Feb; 266(2):441-61. PubMed ID: 9047374 [TBL] [Abstract][Full Text] [Related]
11. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity. Brömme D; Bonneau PR; Lachance P; Storer AC J Biol Chem; 1994 Dec; 269(48):30238-42. PubMed ID: 7982933 [TBL] [Abstract][Full Text] [Related]
12. Exploring the binding preferences/specificity in the active site of human cathepsin E. Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964 [TBL] [Abstract][Full Text] [Related]
13. Active site mapping of the serine proteases human leukocyte elastase, cathepsin G, porcine pancreatic elastase, rat mast cell proteases I and II. Bovine chymotrypsin A alpha, and Staphylococcus aureus protease V-8 using tripeptide thiobenzyl ester substrates. Harper JW; Cook RR; Roberts CJ; McLaughlin BJ; Powers JC Biochemistry; 1984 Jun; 23(13):2995-3002. PubMed ID: 6380580 [TBL] [Abstract][Full Text] [Related]
14. Extended substrate specificity of rat mast cell protease 5, a rodent alpha-chymase with elastase-like primary specificity. Karlson U; Pejler G; Tomasini-Johansson B; Hellman L J Biol Chem; 2003 Oct; 278(41):39625-31. PubMed ID: 12900423 [TBL] [Abstract][Full Text] [Related]
16. Recombinant aprotinin homologue with new inhibitory specificity for cathepsin G. Brinkmann T; Schnierer S; Tschesche H Eur J Biochem; 1991 Nov; 202(1):95-9. PubMed ID: 1718753 [TBL] [Abstract][Full Text] [Related]
17. Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Powers JC; Tanaka T; Harper JW; Minematsu Y; Barker L; Lincoln D; Crumley KV; Fraki JE; Schechter NM; Lazarus GG Biochemistry; 1985 Apr; 24(8):2048-58. PubMed ID: 3893542 [TBL] [Abstract][Full Text] [Related]
18. Heterologous expression of three plant serpins with distinct inhibitory specificities. Dahl SW; Rasmussen SK; Hejgaard J J Biol Chem; 1996 Oct; 271(41):25083-8. PubMed ID: 8810262 [TBL] [Abstract][Full Text] [Related]
19. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin. Otlewski J; Zbyryt T Biochemistry; 1994 Jan; 33(1):200-7. PubMed ID: 8286341 [TBL] [Abstract][Full Text] [Related]
20. Phage display selection of P1 mutants of BPTI directed against five different serine proteinases. Kiczak L; Koscielska K; Otlewski J; Czerwinski M; Dadlez M Biol Chem; 1999 Jan; 380(1):101-5. PubMed ID: 10064144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]