These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9675687)

  • 1. Biomechanics of human thoracic ribs.
    Yoganandan N; Pintar FA
    J Biomech Eng; 1998 Feb; 120(1):100-4. PubMed ID: 9675687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine.
    Oda I; Abumi K; Lü D; Shono Y; Kaneda K
    Spine (Phila Pa 1976); 1996 Jun; 21(12):1423-9. PubMed ID: 8792518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical contribution of the rib cage to thoracic stability.
    Brasiliense LB; Lazaro BC; Reyes PM; Dogan S; Theodore N; Crawford NR
    Spine (Phila Pa 1976); 2011 Dec; 36(26):E1686-93. PubMed ID: 22138782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical examination of the thoracic spine--the axial rotation moment and vertical loading capacity of the transverse process.
    Csernátony Z; Molnár S; Hunya Z; Manó S; Kiss L
    J Orthop Res; 2011 Dec; 29(12):1904-9. PubMed ID: 21647957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical properties of human ribs in young adult.
    Pezowicz C; Głowacki M
    Acta Bioeng Biomech; 2012; 14(2):53-60. PubMed ID: 22793688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests.
    Kemper AR; McNally C; Pullins CA; Freeman LJ; Duma SM; Rouhana SM
    Stapp Car Crash J; 2007 Oct; 51():235-73. PubMed ID: 18278600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validated thoracic vertebrae and costovertebral joints increase biofidelity of a human body model in hub impacts.
    Aira J; Guleyupoglu B; Jones D; Koya B; Davis M; Gayzik FS
    Traffic Inj Prev; 2019; 20(sup2):S1-S6. PubMed ID: 31364878
    [No Abstract]   [Full Text] [Related]  

  • 8. A biomechanical analysis of metastatic vertebral collapse of the thoracic spine: a sheep model study.
    Ebihara H; Ito M; Abumi K; Taneichi H; Kotani Y; Minami A; Kaneda K
    Spine (Phila Pa 1976); 2004 May; 29(9):994-9. PubMed ID: 15105670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage.
    Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF
    J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.
    Ignasiak D; Dendorfer S; Ferguson SJ
    J Biomech; 2016 Apr; 49(6):959-966. PubMed ID: 26684431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical analysis of the human cadaveric thoracic spine with intact rib cage.
    Mannen EM; Anderson JT; Arnold PM; Friis EA
    J Biomech; 2015 Jul; 48(10):2060-6. PubMed ID: 25912664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric and mechanical properties of human cervical spine ligaments.
    Yoganandan N; Kumaresan S; Pintar FA
    J Biomech Eng; 2000 Dec; 122(6):623-9. PubMed ID: 11192384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Contribution of the Rib Cage in the Human Cadaveric Thoracic Spine.
    Mannen EM; Anderson JT; Arnold PM; Friis EA
    Spine (Phila Pa 1976); 2015 Jul; 40(13):E760-6. PubMed ID: 25768687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical response of the human clavicle subjected to dynamic bending.
    Kemper A; Stitzel J; Gabler C; Duma S; Matsuoka F
    Biomed Sci Instrum; 2006; 42():231-6. PubMed ID: 16817613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of repeated loading and freeze-thaw cycling on immature bovine thoracic motion segment stiffness.
    Sunni N; Askin GN; Labrom RD; Izatt MT; Pearcy MJ; Adam CJ
    Proc Inst Mech Eng H; 2014 Oct; 228(10):1100-7. PubMed ID: 25406230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response of pediatric ribs to quasi-static loading: mechanical properties and microstructure.
    Agnew AM; Moorhouse K; Kang YS; Donnelly BR; Pfefferle K; Manning AX; Litsky AS; Herriott R; Abdel-Rasoul M; Bolte JH
    Ann Biomed Eng; 2013 Dec; 41(12):2501-14. PubMed ID: 23907336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical properties of the costovertebral joint.
    Duprey S; Subit D; Guillemot H; Kent RW
    Med Eng Phys; 2010 Mar; 32(2):222-7. PubMed ID: 20036178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Response Targets of Adult Human Ribs in Frontal Impacts.
    Kang YS; Kwon HJ; Stammen J; Moorhouse K; Agnew AM
    Ann Biomed Eng; 2021 Feb; 49(2):900-911. PubMed ID: 32989590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dorsal versus ventral shear loads on the rotational stability of the thoracic spine: a biomechanical porcine and human cadaveric study.
    Kouwenhoven JW; Smit TH; van der Veen AJ; Kingma I; van Dieën JH; Castelein RM
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2545-50. PubMed ID: 17978652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical analysis of the upper thoracic spine after decompressive procedures.
    Healy AT; Lubelski D; Mageswaran P; Bhowmick DA; Bartsch AJ; Benzel EC; Mroz TE
    Spine J; 2014 Jun; 14(6):1010-6. PubMed ID: 24291701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.