These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9675863)

  • 1. Distribution of mevalonate and glyceraldehyde 3-phosphate/pyruvate routes for isoprenoid biosynthesis in some gram-negative bacteria and mycobacteria.
    Putra SR; Disch A; Bravo JM; Rohmer M
    FEMS Microbiol Lett; 1998 Jul; 164(1):169-75. PubMed ID: 9675863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the absence of the glyceraldehyde 3-phosphate/pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts.
    Disch A; Rohmer M
    FEMS Microbiol Lett; 1998 Nov; 168(2):201-8. PubMed ID: 9835029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714.
    Disch A; Schwender J; Müller C; Lichtenthaler HK; Rohmer M
    Biochem J; 1998 Jul; 333 ( Pt 2)(Pt 2):381-8. PubMed ID: 9657979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isoprenoid biosynthesis via the mevalonate-independent route, a novel target for antibacterial drugs?
    Rohmer M
    Prog Drug Res; 1998; 50():135-54. PubMed ID: 9670778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.
    Schwender J; Seemann M; Lichtenthaler HK; Rohmer M
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):73-80. PubMed ID: 8645235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new alternative non-mevalonate pathway for isoprenoid biosynthesis in eubacteria and plants.
    Paseshnichenko VA
    Biochemistry (Mosc); 1998 Feb; 63(2):139-48. PubMed ID: 9526105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose.
    Flesch G; Rohmer M
    Eur J Biochem; 1988 Aug; 175(2):405-11. PubMed ID: 3136017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic co-oxidation of acetate and glucose by citrobacter intermedius and a species of Pseudomonas.
    Brosseau JD; Zajic JE
    Can J Microbiol; 1980 Dec; 26(12):1503-5. PubMed ID: 6786717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoprenoid quinones in the classification of coryneform and related bacteria.
    Collins MD; Goodfellow M; Minnikin DE
    J Gen Microbiol; 1979 Jan; 110(1):127-36. PubMed ID: 107269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Evaluation of antibacterial activities of various antibiotics against glucose non-fermentative gram-negative rods other than Pseudomonas aeruginosa].
    Kouda M; Fukuhara J; Takeuchi M; Ohgawara M; Matsuzaki H; Tohi H; Furuhata N; Maruyama M; Sasaki K; Sawabe E; Ikeda A; Suzuki T; Satoh H; Takahashi I; Kimura F; Nomura H; Ono E
    Jpn J Antibiot; 1998 Jul; 51(7):475-87. PubMed ID: 9755431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Uncommon non-fermenting Gram-negative rods as pathogens of lower respiratory tract infection].
    Juhász E; Iván M; Pongrácz J; Kristóf K
    Orv Hetil; 2018 Jan; 159(1):23-30. PubMed ID: 29291642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS.
    Lichtenthaler HK
    Annu Rev Plant Physiol Plant Mol Biol; 1999 Jun; 50():47-65. PubMed ID: 15012203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of labeled sodium acetate and glucose in the study of Mycobacteria and BCG vaccine].
    PASQUIER JF; KURYLOWICS W
    Prog Nucl Energy 6 Biol Sci; 1958; 2(3):469-80. PubMed ID: 24546448
    [No Abstract]   [Full Text] [Related]  

  • 14. The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants.
    Kirkwood AE; Nalewajko C; Fulthorpe RR
    Microb Ecol; 2006 Jan; 51(1):4-12. PubMed ID: 16382284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoprenoid biosynthesis via a mevalonate-independent pathway in plants: cloning and heterologous expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase from peppermint.
    Lange BM; Croteau R
    Arch Biochem Biophys; 1999 May; 365(1):170-4. PubMed ID: 10222052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of contents and redox states of ubiquinone and menaquinone.
    Kröger A
    Methods Enzymol; 1978; 53():579-91. PubMed ID: 101738
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium.
    Hayashi NR; Ishida T; Yokota A; Kodama T; Igarashi Y
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():783-6. PubMed ID: 10319503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoprenoid biosynthesis in adult Brugia pahangi and Dirofilaria immitis.
    Comley JC; Jaffe JJ
    J Parasitol; 1981 Oct; 67(5):609-16. PubMed ID: 7299575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of chloroplastidic and extrachloroplastidic terpenoids in liverwort cultured cells: 13C serine as a probe of terpene biosynthesis via mevalonate and non-mevalonate pathways.
    Itoh D; Kawano K; Nabeta K
    J Nat Prod; 2003 Mar; 66(3):332-6. PubMed ID: 12662088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in bacterial pathways for the biosynthesis of ubiquinone.
    Abby SS; Kazemzadeh K; Vragniau C; Pelosi L; Pierrel F
    Biochim Biophys Acta Bioenerg; 2020 Nov; 1861(11):148259. PubMed ID: 32663475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.