BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9677301)

  • 1. A general rule for the relationship between hydrophobic effect and conformational stability of a protein: stability and structure of a series of hydrophobic mutants of human lysozyme.
    Takano K; Yamagata Y; Yutani K
    J Mol Biol; 1998 Jul; 280(4):749-61. PubMed ID: 9677301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the hydrophobic effect to the stability of human lysozyme: calorimetric studies and X-ray structural analyses of the nine valine to alanine mutants.
    Takano K; Yamagata Y; Fujii S; Yutani K
    Biochemistry; 1997 Jan; 36(4):688-98. PubMed ID: 9020766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six Ser --> Ala mutants.
    Takano K; Yamagata Y; Kubota M; Funahashi J; Fujii S; Yutani K
    Biochemistry; 1999 May; 38(20):6623-9. PubMed ID: 10350481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of hydrophobic residues to the stability of human lysozyme: calorimetric studies and X-ray structural analysis of the five isoleucine to valine mutants.
    Takano K; Ogasahara K; Kaneda H; Yamagata Y; Fujii S; Kanaya E; Kikuchi M; Oobatake M; Yutani K
    J Mol Biol; 1995 Nov; 254(1):62-76. PubMed ID: 7473760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buried water molecules contribute to the conformational stability of a protein.
    Takano K; Yamagata Y; Yutani K
    Protein Eng; 2003 Jan; 16(1):5-9. PubMed ID: 12646687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and X-ray analysis of six tyrosine --> phenylalanine mutants.
    Yamagata Y; Kubota M; Sumikawa Y; Funahashi J; Takano K; Fujii S; Yutani K
    Biochemistry; 1998 Jun; 37(26):9355-62. PubMed ID: 9649316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences.
    Eriksson AE; Baase WA; Matthews BW
    J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of water molecules in the interior of a protein to the conformational stability.
    Takano K; Funahashi J; Yamagata Y; Fujii S; Yutani K
    J Mol Biol; 1997 Nov; 274(1):132-42. PubMed ID: 9398521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic core substitutions in calbindin D9k: effects on stability and structure.
    Julenius K; Thulin E; Linse S; Finn BE
    Biochemistry; 1998 Jun; 37(25):8915-25. PubMed ID: 9636033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic effects of proline introduction on protein stability.
    Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R
    Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enthalpic destabilization of a mutant human lysozyme lacking a disulfide bridge between cysteine-77 and cysteine-95.
    Kuroki R; Inaka K; Taniyama Y; Kidokoro S; Matsushima M; Kikuchi M; Yutani K
    Biochemistry; 1992 Sep; 31(35):8323-8. PubMed ID: 1525170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative importance of secondary structure and solvent accessibility to the stability of protein mutants. A case study with amino acid properties and energetics on T4 and human lysozymes.
    Saraboji K; Gromiha MM; Ponnuswamy MN
    Comput Biol Chem; 2005 Feb; 29(1):25-35. PubMed ID: 15680583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of disulfide bonds in goose-type lysozyme.
    Kawamura S; Ohkuma M; Chijiiwa Y; Kohno D; Nakagawa H; Hirakawa H; Kuhara S; Torikata T
    FEBS J; 2008 Jun; 275(11):2818-30. PubMed ID: 18430025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The introduction of strain and its effects on the structure and stability of T4 lysozyme.
    Liu R; Baase WA; Matthews BW
    J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of surface hydrophobic residues in the conformational stability of human lysozyme at three different positions.
    Funahashi J; Takano K; Yamagata Y; Yutani K
    Biochemistry; 2000 Nov; 39(47):14448-56. PubMed ID: 11087397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical free energy calculations: a blind test and further improvements to the method.
    Novotny J; Bruccoleri RE; Davis M; Sharp KA
    J Mol Biol; 1997 May; 268(2):401-11. PubMed ID: 9159479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational and structural-based analyses of the osmolyte effect on protein stability.
    Takano K; Saito M; Morikawa M; Kanaya S
    J Biochem; 2004 Jun; 135(6):701-8. PubMed ID: 15213245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability.
    Chen J; Lu Z; Sakon J; Stites WE
    J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transition state in the folding-unfolding reaction of four species of three-disulfide variant of hen lysozyme: the role of each disulfide bridge.
    Yokota A; Izutani K; Takai M; Kubo Y; Noda Y; Koumoto Y; Tachibana H; Segawa S
    J Mol Biol; 2000 Feb; 295(5):1275-88. PubMed ID: 10653703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of succinylation on the structure and thermostability of lysozyme.
    van der Veen M; Norde W; Stuart MC
    J Agric Food Chem; 2005 Jul; 53(14):5702-7. PubMed ID: 15998136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.