These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 9677327)
1. Mutational analysis of the two ATP-binding sites in ClpB, a heat shock protein with protein-activated ATPase activity in Escherichia coli. Kim KI; Woo KM; Seong IS; Lee ZW; Baek SH; Chung CH Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):671-6. PubMed ID: 9677327 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of the dual translational initiation sites of the clpB gene of Escherichia coli and characterization of its gene products. Park SK; Kim KI; Woo KM; Seol JH; Tanaka K; Ichihara A; Ha DB; Chung CH J Biol Chem; 1993 Sep; 268(27):20170-4. PubMed ID: 8376377 [TBL] [Abstract][Full Text] [Related]
3. Heptameric ring structure of the heat-shock protein ClpB, a protein-activated ATPase in Escherichia coli. Kim KI; Cheong GW; Park SC; Ha JS; Woo KM; Choi SJ; Chung CH J Mol Biol; 2000 Nov; 303(5):655-66. PubMed ID: 11061966 [TBL] [Abstract][Full Text] [Related]
4. The heat-shock protein ClpB in Escherichia coli is a protein-activated ATPase. Woo KM; Kim KI; Goldberg AL; Ha DB; Chung CH J Biol Chem; 1992 Oct; 267(28):20429-34. PubMed ID: 1400361 [TBL] [Abstract][Full Text] [Related]
5. Site-directed mutagenesis of conserved charged amino acid residues in ClpB from Escherichia coli. Barnett ME; Zolkiewski M Biochemistry; 2002 Sep; 41(37):11277-83. PubMed ID: 12220194 [TBL] [Abstract][Full Text] [Related]
6. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB. Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562 [TBL] [Abstract][Full Text] [Related]
7. Distinctive roles of the two ATP-binding sites in ClpA, the ATPase component of protease Ti in Escherichia coli. Seol JH; Baek SH; Kang MS; Ha DB; Chung CH J Biol Chem; 1995 Apr; 270(14):8087-92. PubMed ID: 7713911 [TBL] [Abstract][Full Text] [Related]
8. Mutational analysis of the ATP-binding site in HslU, the ATPase component of HslVU protease in Escherichia coli. Shin DH; Yoo SJ; Shim YK; Seol JH; Kang MS; Chung CH FEBS Lett; 1996 Dec; 398(2-3):151-4. PubMed ID: 8977096 [TBL] [Abstract][Full Text] [Related]
9. Conserved amino acid residues within the amino-terminal domain of ClpB are essential for the chaperone activity. Liu Z; Tek V; Akoev V; Zolkiewski M J Mol Biol; 2002 Aug; 321(1):111-20. PubMed ID: 12139937 [TBL] [Abstract][Full Text] [Related]
10. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113 [TBL] [Abstract][Full Text] [Related]
11. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites. Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement. Yamasaki T; Oohata Y; Nakamura T; Watanabe YH J Biol Chem; 2015 Apr; 290(15):9789-800. PubMed ID: 25713084 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of an Escherichia coli DnaK mutant with impaired ATPase activity. Burkholder WF; Panagiotidis CA; Silverstein SJ; Cegielska A; Gottesman ME; Gaitanaris GA J Mol Biol; 1994 Sep; 242(4):364-77. PubMed ID: 7932696 [TBL] [Abstract][Full Text] [Related]
14. Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein. Hoskins JR; Doyle SM; Wickner S Proc Natl Acad Sci U S A; 2009 Dec; 106(52):22233-8. PubMed ID: 19940245 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity. Li J; Sha B J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807 [TBL] [Abstract][Full Text] [Related]
16. The ATPase activity of Hsp104, effects of environmental conditions and mutations. Schirmer EC; Queitsch C; Kowal AS; Parsell DA; Lindquist S J Biol Chem; 1998 Jun; 273(25):15546-52. PubMed ID: 9624144 [TBL] [Abstract][Full Text] [Related]
17. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100. Kedzierska S; Matuszewska E FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148 [TBL] [Abstract][Full Text] [Related]
18. Poly-L-lysine enhances the protein disaggregation activity of ClpB. Strub C; Schlieker C; Bukau B; Mogk A FEBS Lett; 2003 Oct; 553(1-2):125-30. PubMed ID: 14550559 [TBL] [Abstract][Full Text] [Related]
19. Visualizing the ATPase cycle in a protein disaggregating machine: structural basis for substrate binding by ClpB. Lee S; Choi JM; Tsai FT Mol Cell; 2007 Jan; 25(2):261-71. PubMed ID: 17244533 [TBL] [Abstract][Full Text] [Related]
20. Both ATPase sites of Escherichia coli UvrA have functional roles in nucleotide excision repair. Thiagalingam S; Grossman L J Biol Chem; 1991 Jun; 266(17):11395-403. PubMed ID: 1828249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]