These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 9677360)

  • 1. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy.
    Yang WP; Levesque PC; Little WA; Conder ML; Ramakrishnan P; Neubauer MG; Blanar MA
    J Biol Chem; 1998 Jul; 273(31):19419-23. PubMed ID: 9677360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.
    Schroeder BC; Kubisch C; Stein V; Jentsch TJ
    Nature; 1998 Dec; 396(6712):687-90. PubMed ID: 9872318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benign familial neonatal convulsions caused by altered gating of KCNQ2/KCNQ3 potassium channels.
    Castaldo P; del Giudice EM; Coppola G; Pascotto A; Annunziato L; Taglialatela M
    J Neurosci; 2002 Jan; 22(2):RC199. PubMed ID: 11784811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal interaction of KCNQ2 and KCNQ3 K+ channels.
    Maljevic S; Lerche C; Seebohm G; Alekov AK; Busch AE; Lerche H
    J Physiol; 2003 Apr; 548(Pt 2):353-60. PubMed ID: 12640002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural determinants of M-type KCNQ (Kv7) K+ channel assembly.
    Schwake M; Athanasiadu D; Beimgraben C; Blanz J; Beck C; Jentsch TJ; Saftig P; Friedrich T
    J Neurosci; 2006 Apr; 26(14):3757-66. PubMed ID: 16597729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy.
    Schwake M; Pusch M; Kharkovets T; Jentsch TJ
    J Biol Chem; 2000 May; 275(18):13343-8. PubMed ID: 10788442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum.
    Singh NA; Westenskow P; Charlier C; Pappas C; Leslie J; Dillon J; Anderson VE; Sanguinetti MC; Leppert MF;
    Brain; 2003 Dec; 126(Pt 12):2726-37. PubMed ID: 14534157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly.
    Schwake M; Jentsch TJ; Friedrich T
    EMBO Rep; 2003 Jan; 4(1):76-81. PubMed ID: 12524525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3.
    Tinel N; Lauritzen I; Chouabe C; Lazdunski M; Borsotto M
    FEBS Lett; 1998 Nov; 438(3):171-6. PubMed ID: 9827540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family.
    Charlier C; Singh NA; Ryan SG; Lewis TB; Reus BE; Leach RJ; Leppert M
    Nat Genet; 1998 Jan; 18(1):53-5. PubMed ID: 9425900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit.
    Tinel N; Diochot S; Lauritzen I; Barhanin J; Lazdunski M; Borsotto M
    FEBS Lett; 2000 Sep; 480(2-3):137-41. PubMed ID: 11034315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel.
    Dedek K; Kunath B; Kananura C; Reuner U; Jentsch TJ; Steinlein OK
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12272-7. PubMed ID: 11572947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.
    Schuetz F; Kumar S; Poronnik P; Adams DJ
    Am J Physiol Cell Physiol; 2008 Jul; 295(1):C73-80. PubMed ID: 18463232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCNQ2/KCNQ3 K+ channels and the molecular pathogenesis of epilepsy: implications for therapy.
    Rogawski MA
    Trends Neurosci; 2000 Sep; 23(9):393-8. PubMed ID: 10941184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome.
    Seebohm G; Scherer CR; Busch AE; Lerche C
    J Biol Chem; 2001 Apr; 276(17):13600-5. PubMed ID: 11278406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential tetraethylammonium sensitivity of KCNQ1-4 potassium channels.
    Hadley JK; Noda M; Selyanko AA; Wood IC; Abogadie FC; Brown DA
    Br J Pharmacol; 2000 Feb; 129(3):413-5. PubMed ID: 10711337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991.
    Wang HS; Brown BS; McKinnon D; Cohen IS
    Mol Pharmacol; 2000 Jun; 57(6):1218-23. PubMed ID: 10825393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel.
    Sanguinetti MC; Curran ME; Zou A; Shen J; Spector PS; Atkinson DL; Keating MT
    Nature; 1996 Nov; 384(6604):80-3. PubMed ID: 8900283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KvLQT1, a voltage-gated potassium channel responsible for human cardiac arrhythmias.
    Yang WP; Levesque PC; Little WA; Conder ML; Shalaby FY; Blanar MA
    Proc Natl Acad Sci U S A; 1997 Apr; 94(8):4017-21. PubMed ID: 9108097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCNQ potassium channels: physiology, pathophysiology, and pharmacology.
    Robbins J
    Pharmacol Ther; 2001 Apr; 90(1):1-19. PubMed ID: 11448722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.