These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 9677378)
1. Identification of a phosphate regulatory site and a low affinity binding site for glucose 6-phosphate in the N-terminal half of human brain hexokinase. Fang TY; Alechina O; Aleshin AE; Fromm HJ; Honzatko RB J Biol Chem; 1998 Jul; 273(31):19548-53. PubMed ID: 9677378 [TBL] [Abstract][Full Text] [Related]
2. Glucose 6-phosphate release of wild-type and mutant human brain hexokinases from mitochondria. Skaff DA; Kim CS; Tsai HJ; Honzatko RB; Fromm HJ J Biol Chem; 2005 Nov; 280(46):38403-9. PubMed ID: 16166083 [TBL] [Abstract][Full Text] [Related]
3. The roles of glycine residues in the ATP binding site of human brain hexokinase. Zeng C; Aleshin AE; Chen G; Honzatko RB; Fromm HJ J Biol Chem; 1998 Jan; 273(2):700-4. PubMed ID: 9422720 [TBL] [Abstract][Full Text] [Related]
4. Allosteric regulation of type I hexokinase: A site-directed mutational study indicating location of the functional glucose 6-phosphate binding site in the N-terminal half of the enzyme. Sebastian S; Wilson JE; Mulichak A; Garavito RM Arch Biochem Biophys; 1999 Feb; 362(2):203-10. PubMed ID: 9989928 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Aleshin AE; Zeng C; Bourenkov GP; Bartunik HD; Fromm HJ; Honzatko RB Structure; 1998 Jan; 6(1):39-50. PubMed ID: 9493266 [TBL] [Abstract][Full Text] [Related]
6. ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis. Zeng C; Aleshin AE; Hardie JB; Harrison RW; Fromm HJ Biochemistry; 1996 Oct; 35(40):13157-64. PubMed ID: 8855953 [TBL] [Abstract][Full Text] [Related]
7. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. Aleshin AE; Zeng C; Bartunik HD; Fromm HJ; Honzatko RB J Mol Biol; 1998 Sep; 282(2):345-57. PubMed ID: 9735292 [TBL] [Abstract][Full Text] [Related]
8. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme. Baijal M; Wilson JE Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067 [TBL] [Abstract][Full Text] [Related]
9. Binding of nucleoside triphosphates, inorganic phosphate, and other polyanionic ligands to the N-terminal region of rat brain hexokinase: relationship to regulation of hexokinase activity by antagonistic interactions between glucose 6-phosphate and inorganic phosphate. White TK; Wilson JE Arch Biochem Biophys; 1990 Feb; 277(1):26-34. PubMed ID: 2306121 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. Aleshin AE; Kirby C; Liu X; Bourenkov GP; Bartunik HD; Fromm HJ; Honzatko RB J Mol Biol; 2000 Mar; 296(4):1001-15. PubMed ID: 10686099 [TBL] [Abstract][Full Text] [Related]
11. Active site residues of human brain hexokinase as studied by site-specific mutagenesis. Zeng C; Fromm HJ J Biol Chem; 1995 May; 270(18):10509-13. PubMed ID: 7737985 [TBL] [Abstract][Full Text] [Related]
12. Dual mechanisms for glucose 6-phosphate inhibition of human brain hexokinase. Liu X; Kim CS; Kurbanov FT; Honzatko RB; Fromm HJ J Biol Chem; 1999 Oct; 274(44):31155-9. PubMed ID: 10531306 [TBL] [Abstract][Full Text] [Related]
13. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases. Baijal M; Wilson JE Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437 [TBL] [Abstract][Full Text] [Related]
14. Nonaggregating mutant of recombinant human hexokinase I exhibits wild-type kinetics and rod-like conformations in solution. Aleshin AE; Malfois M; Liu X; Kim CS; Fromm HJ; Honzatko RB; Koch MH; Svergun DI Biochemistry; 1999 Jun; 38(26):8359-66. PubMed ID: 10387081 [TBL] [Abstract][Full Text] [Related]
15. Rat brain hexokinase: location of the allosteric regulatory site in a structural domain at the N-terminus of the enzyme. White TK; Wilson JE Arch Biochem Biophys; 1987 Dec; 259(2):402-11. PubMed ID: 3426236 [TBL] [Abstract][Full Text] [Related]
16. Rat brain hexokinase: further studies on the specificity of the hexose and hexose 6-phosphate binding sites. Wilson JE; Chung V Arch Biochem Biophys; 1989 Mar; 269(2):517-25. PubMed ID: 2919881 [TBL] [Abstract][Full Text] [Related]
17. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes. Tsai HJ Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451 [TBL] [Abstract][Full Text] [Related]
18. Functional organization of mammalian hexokinases: characterization of chimeric hexokinases constructed from the N- and C-terminal domains of the rat type I and type II isozymes. Tsai HJ; Wilson JE Arch Biochem Biophys; 1995 Jan; 316(1):206-14. PubMed ID: 7840618 [TBL] [Abstract][Full Text] [Related]
19. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites. Tsai HJ; Wilson JE Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630 [TBL] [Abstract][Full Text] [Related]
20. Function of interdomain alpha-helix in human brain hexokinase: covalent linkage and catalytic regulation between N- and C-terminal halves. Tsai HJ J Biomed Sci; 2007 Mar; 14(2):195-202. PubMed ID: 17080299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]