These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9677581)

  • 21. Determination of excimer laser ablation rate of the human cornea using in vivo Scheimpflug videography.
    Huebscher HJ; Genth U; Seiler T
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):42-6. PubMed ID: 8550334
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excimer laser photorefractive keratectomy with different ablation zones.
    Hassan Z; Lampé Z; Békési L; Berta A
    Acta Chir Hung; 1997; 36(1-4):122-4. PubMed ID: 9408312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transplantation of tissue-engineered epithelial cell sheets after excimer laser photoablation reduces postoperative corneal haze.
    Hayashida Y; Nishida K; Yamato M; Yang J; Sugiyama H; Watanabe K; Hori Y; Maeda N; Kikuchi A; Okano T; Tano Y
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):552-7. PubMed ID: 16431950
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Excimer laser versus diamond fraise: equal short-term outcome of corneal smoothing in pterygium operations].
    Jandrasits K; Schauersberger J; Nepp J; Rainer G; Vass C; Skorpik C
    Klin Monbl Augenheilkd; 2001 Jun; 218(6):418-23. PubMed ID: 11488007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excimer laser calibration system.
    Gottsch JD; Rencs EV; Cambier JL; Hall D; Azar DT; Stark WJ
    J Refract Surg; 1996; 12(3):401-11. PubMed ID: 8705716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The importance of the corneal epithelium in excimer-laser photorefractive keratectomy.
    Lohmann CP; Patmore A; Reischl U; Marshall J
    Ger J Ophthalmol; 1996 Nov; 5(6):368-72. PubMed ID: 9479520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses.
    Dair GT; Pelouch WS; van Saarloos PP; Lloyd DJ; Linares SM; Reinholz F
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2752-6. PubMed ID: 10509676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of optical low coherence reflectometry and ultrasound pachymetry in the measurement of central corneal thickness before and after photorefractive keratectomy.
    Spadea L; Giammaria D; Di Genova L; Fiasca A
    J Refract Surg; 2007 Sep; 23(7):661-6. PubMed ID: 17912935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Keratinocyte density of the cornea in vivo. Automated measurement with a modified confocal microscopy MICROPHTHAL].
    Stave J; Slowik C; Somodi S; Hahnel C; Grümmer G; Guthoff R
    Klin Monbl Augenheilkd; 1998 Jul; 213(1):38-44. PubMed ID: 9743937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of optical coherence reflectometry and ultrasound central corneal pachymetry.
    Gillis A; Zeyen T
    Bull Soc Belge Ophtalmol; 2004; (292):71-5. PubMed ID: 15253494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous non-contact corneal pachymetry with a high speed reflectometer.
    Böhnke M; Chavanne P; Gianotti R; Salathé RP
    J Refract Surg; 1998; 14(2):140-6. PubMed ID: 9574745
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lamellar excimer laser keratoplasty: reproducible photoablation of corneal tissue. A laboratory study.
    Kubota T; Seitz B; Tetsumoto K; Naumann GO
    Doc Ophthalmol; 1992; 82(3):193-200. PubMed ID: 1303854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Measurement of the central corneal thickness using optical reflectometry and ultrasound].
    Beutelspacher SC; Serbecic N; Scheuerle AF
    Klin Monbl Augenheilkd; 2011 Sep; 228(9):815-8. PubMed ID: 21432766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental evaluation of online optical coherence pachymetry for corneal refractive surgery.
    Wirbelauer C; Aurich H; Jaroszewski J; Hartmann C; Pham DT
    Graefes Arch Clin Exp Ophthalmol; 2004 Jan; 242(1):24-30. PubMed ID: 14618337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Current status of infrared photoablation of the cornea].
    Jean B; Bende T
    Klin Monbl Augenheilkd; 1999 Apr; 214(4):195-202. PubMed ID: 10407800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Holographic interferometry of excimer-laser-ablated bovine eyes: first results.
    Förster W; Stupp T; Kasprzak H
    Ophthalmologica; 2003; 217(1):62-7. PubMed ID: 12566876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corneal ablation profilometry and steep central islands.
    Shimmick JK; Telfair WB; Munnerlyn CR; Bartlett JD; Trokel SL
    J Refract Surg; 1997; 13(3):235-45. PubMed ID: 9183755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Limitations of erbium:YAG laser photorefractive keratectomy.
    Mrochen M; Semshichen V; Funk RH; Seiler T
    J Refract Surg; 2000; 16(1):51-9. PubMed ID: 10693619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Smoothing of the ablated porcine anterior corneal surface using the Technolas Keracor 217C and Nidek EC-5000 excimer lasers.
    Lombardo M; Serrao S
    J Refract Surg; 2004; 20(5):450-3. PubMed ID: 15523956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Photo-ablation of the cornea with the erbium:YAG laser].
    Mrochen M; Meinhard FP; Semshichen V; Funk RW; Seiler T
    Ophthalmologe; 1999 Jun; 96(6):387-91. PubMed ID: 10429497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.