These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9677759)

  • 21. Stress risers between two ipsilateral intramedullary stems: a finite-element and biomechanical analysis.
    Iesaka K; Kummer FJ; Di Cesare PE
    J Arthroplasty; 2005 Apr; 20(3):386-91. PubMed ID: 15809959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strain adaptive bone remodelling: influence of the implantation technique.
    Behrens BA; Bouguecha A; Nolte I; Meyer-Lindenberg A; Stukenborg-Colsman C; Pressel T
    Stud Health Technol Inform; 2008; 133():33-44. PubMed ID: 18376011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity intensity, assistive devices and joint replacement influence predicted remodelling in the proximal femur.
    Dickinson AS
    Biomech Model Mechanobiol; 2016 Feb; 15(1):181-94. PubMed ID: 26183472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between DEXA and finite element studies in the long-term bone remodeling of an anatomical femoral stem.
    Herrera A; Panisello JJ; Ibarz E; Cegoñino J; Puértolas JA; Gracia L
    J Biomech Eng; 2009 Apr; 131(4):041013. PubMed ID: 19275442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of porous coating and loading conditions on total hip femoral stem stability.
    Biegler FB; Reuben JD; Harrigan TP; Hou FJ; Akin JE
    J Arthroplasty; 1995 Dec; 10(6):839-47. PubMed ID: 8749770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biphasic constitutive laws for biological interface evolution.
    Büchler P; Pioletti DP; Rakotomanana LR
    Biomech Model Mechanobiol; 2003 Apr; 1(4):239-49. PubMed ID: 14586693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dynamic model of simulating stress distribution in the distal femur after total knee replacement.
    Shi JF; Wang CJ; Laoui T; Hart W; Hall R
    Proc Inst Mech Eng H; 2007 Nov; 221(8):903-12. PubMed ID: 18161250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The importance and form of the collar in hip joint endoprosthesis. Theoretical analysis and biomechanical study].
    Hopf T; Hopf C
    Unfallchirurg; 1991 Apr; 94(4):163-7. PubMed ID: 2063211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Change of offset after implantation of hip alloarthroplasties].
    Jerosch J; Funken S
    Unfallchirurg; 2004 Jun; 107(6):475-82. PubMed ID: 15197454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Computer-assisted calculation of sectional forces of the femur].
    Schreiber U; Steinhauser E; Kaddick C; Hipp E
    Biomed Tech (Berl); 1997; 42 Suppl():13-4. PubMed ID: 9517025
    [No Abstract]   [Full Text] [Related]  

  • 31. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis.
    Oshkour AA; Abu Osman NA; Yau YH; Tarlochan F; Abas WA
    Proc Inst Mech Eng H; 2013 Jan; 227(1):3-17. PubMed ID: 23516951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strain redistribution in the canine femur resulting from hip implants of different stiffnesses.
    Szivek JA; Magee FP; Hanson T; Hedley AK
    J Invest Surg; 1994; 7(2):95-110. PubMed ID: 8049183
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparative periprosthetic bone density measurements of the proximal femur shaft using dual energy x-ray absorptiometry (DEXA) with experimental "Press Fit-gliding Stem Prosthesis"].
    Krüger A; Berli B; Lampert C; Kränzlin C; Morscher E
    Z Orthop Ihre Grenzgeb; 1998; 136(2):115-25. PubMed ID: 9615973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Stress analysis of an anatomically-adapted femur shaft prosthesis (Lubinus SPII)].
    Alter P; Lengsfeld M; Schmitt J
    Z Orthop Ihre Grenzgeb; 1999; 137(2):129-35. PubMed ID: 10408055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. X-ray image review of the bone remodeling around an osseointegrated trans-femoral implant and a finite element simulation case study.
    Xu W; Robinson K
    Ann Biomed Eng; 2008 Mar; 36(3):435-43. PubMed ID: 18197477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extensive risk analysis of mechanical failure for an epiphyseal hip prothesis: a combined numerical-experimental approach.
    Martelli S; Taddei F; Cristofolini L; Gill HS; Viceconti M
    Proc Inst Mech Eng H; 2011 Feb; 225(2):126-40. PubMed ID: 21428147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of FE idealisation, load conditions and interface assumptions on the stress distribution and fatigue notch factor in the human femur with an endoprosthesis.
    Hedia HS; Barton DC; Fisher J; Elmidany TT
    Biomed Mater Eng; 1996; 6(3):135-52. PubMed ID: 8922259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the effect of remodelling signal type on the finite element based predictions of bone remodelling around the thrust plate prosthesis: a patient-specific comparison.
    Schmitz MJ; Clift SE; Taylor WR; Hertig D; Warner MD; Ploeg HL; Bereiter H
    Proc Inst Mech Eng H; 2004; 218(6):417-24. PubMed ID: 15648665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Bone adaptation changes mechanical stress in the femur--a prospective two years follow up after Hüft-TEP implantation].
    Lengsfeld M; Günther D; Pressel T; Leppek R; Schmitt J; Griss P
    Z Orthop Ihre Grenzgeb; 2003; 141(5):526-30. PubMed ID: 14551838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis.
    Peter B; Ramaniraka N; Rakotomanana LR; Zambelli PY; Pioletti DP
    Comput Methods Biomech Biomed Engin; 2004 Apr; 7(2):73-8. PubMed ID: 15203955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.