These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9678602)

  • 1. Protein biosynthesis: structural studies of the elongation cycle.
    Nyborg J; Liljas A
    FEBS Lett; 1998 Jun; 430(1-2):95-9. PubMed ID: 9678602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors.
    Akama K; Christian BE; Jones CN; Ueda T; Takeuchi N; Spremulli LL
    Biochim Biophys Acta; 2010; 1802(7-8):692-8. PubMed ID: 20435138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elongation in bacterial protein biosynthesis.
    Nyborg J; Kjeldgaard M
    Curr Opin Biotechnol; 1996 Aug; 7(4):369-75. PubMed ID: 8768893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An A to U transversion at position 1067 of 23 S rRNA from Escherichia coli impairs EF-Tu and EF-G function.
    Saarma U; Remme J; Ehrenberg M; Bilgin N
    J Mol Biol; 1997 Sep; 272(3):327-35. PubMed ID: 9325093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.
    Nissen P; Kjeldgaard M; Thirup S; Polekhina G; Reshetnikova L; Clark BF; Nyborg J
    Science; 1995 Dec; 270(5241):1464-72. PubMed ID: 7491491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts.
    Cai YC; Bullard JM; Thompson NL; Spremulli LL
    J Biol Chem; 2000 Jul; 275(27):20308-14. PubMed ID: 10801827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain.
    Helgstrand M; Mandava CS; Mulder FA; Liljas A; Sanyal S; Akke M
    J Mol Biol; 2007 Jan; 365(2):468-79. PubMed ID: 17070545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation factor Tu D138N, a mutant with modified substrate specificity, as a tool to study energy consumption in protein biosynthesis.
    Weijland A; Parlato G; Parmeggiani A
    Biochemistry; 1994 Sep; 33(35):10711-7. PubMed ID: 8075071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways.
    Liu W; Chen C; Kavaliauskas D; Knudsen CR; Goldman YE; Cooperman BS
    Nucleic Acids Res; 2015 Oct; 43(19):9519-28. PubMed ID: 26338772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformational properties of elongation factor G and the mechanism of translocation.
    Czworkowski J; Moore PB
    Biochemistry; 1997 Aug; 36(33):10327-34. PubMed ID: 9254632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mimicry in protein synthesis?
    Moore PB
    Science; 1995 Dec; 270(5241):1453-4. PubMed ID: 7491488
    [No Abstract]   [Full Text] [Related]  

  • 15. Ribosomal proteins and elongation factors.
    Liljas A; Garber M
    Curr Opin Struct Biol; 1995 Dec; 5(6):721-7. PubMed ID: 8749358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis?
    Weijland A; Parmeggiani A
    Trends Biochem Sci; 1994 May; 19(5):188-93. PubMed ID: 8048158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ternary complex of EF-Tu and its role in protein biosynthesis.
    Clark BF; Nyborg J
    Curr Opin Struct Biol; 1997 Feb; 7(1):110-6. PubMed ID: 9032056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes.
    Bullard JM; Cai YC; Zhang Y; Spremulli LL
    Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu.
    Wolf H; Chinali G; Parmeggiani A
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):4910-4. PubMed ID: 4373734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome.
    Yu H; Chan YL; Wool IG
    J Mol Biol; 2009 Feb; 386(3):802-13. PubMed ID: 19154738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.