These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 9678602)
41. [Ef-Ts elongation factor interacts with elongation factor EF-Tu on ribosomes prior to the GTP hydrolysis stage]. Bubunenko MG; Gudkov AT Mol Biol (Mosk); 1991; 25(1):172-6. PubMed ID: 1896033 [TBL] [Abstract][Full Text] [Related]
42. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis. Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432 [TBL] [Abstract][Full Text] [Related]
43. Enacyloxin IIa, an inhibitor of protein biosynthesis that acts on elongation factor Tu and the ribosome. Cetin R; Krab IM; Anborgh PH; Cool RH; Watanabe T; Sugiyama T; Izaki K; Parmeggiani A EMBO J; 1996 May; 15(10):2604-11. PubMed ID: 8665868 [TBL] [Abstract][Full Text] [Related]
44. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729 [TBL] [Abstract][Full Text] [Related]
45. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. Tubulekas I; Hughes D J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899 [TBL] [Abstract][Full Text] [Related]
46. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Agrawal RK; Penczek P; Grassucci RA; Frank J Proc Natl Acad Sci U S A; 1998 May; 95(11):6134-8. PubMed ID: 9600930 [TBL] [Abstract][Full Text] [Related]
47. Visualization of elongation factor Tu on the Escherichia coli ribosome. Stark H; Rodnina MV; Rinke-Appel J; Brimacombe R; Wintermeyer W; van Heel M Nature; 1997 Sep; 389(6649):403-6. PubMed ID: 9311785 [TBL] [Abstract][Full Text] [Related]
48. Toward a model for the interaction between elongation factor Tu and the ribosome. Weijland A; Parmeggiani A Science; 1993 Feb; 259(5099):1311-4. PubMed ID: 8446899 [TBL] [Abstract][Full Text] [Related]
49. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
50. Possible evolution of factors involved in protein biosynthesis. Nyborg J Acta Biochim Pol; 1998; 45(4):883-94. PubMed ID: 10397336 [TBL] [Abstract][Full Text] [Related]
51. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. Pape T; Wintermeyer W; Rodnina MV EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203 [TBL] [Abstract][Full Text] [Related]
52. A mutant elongation factor Tu which does not immobilize the ribosome upon binding of kirromycin. Duisterwinkel FJ; De Graaf JM; Schretlen PJ; Kraal B; Bosch L Eur J Biochem; 1981 Jun; 117(1):7-12. PubMed ID: 7021158 [TBL] [Abstract][Full Text] [Related]
53. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
54. Mechanistic studies of the translational elongation cycle in mammalian mitochondria. Woriax VL; Bullard JM; Ma L; Yokogawa T; Spremulli LL Biochim Biophys Acta; 1997 May; 1352(1):91-101. PubMed ID: 9177487 [TBL] [Abstract][Full Text] [Related]
55. Complex formation of the elongation factor Tu from Pseudomonas aeruginosa with nucleoside diphosphate kinase modulates ribosomal GTP synthesis and peptide chain elongation. Mukhopadhyay S; Shankar S; Walden W; Chakrabarty AM J Biol Chem; 1997 Jul; 272(28):17815-20. PubMed ID: 9211936 [TBL] [Abstract][Full Text] [Related]
56. A complex profile of protein elongation: translating chemical energy into molecular movement. Abel K; Jurnak F Structure; 1996 Mar; 4(3):229-38. PubMed ID: 8805530 [TBL] [Abstract][Full Text] [Related]
57. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G. Richman N; Bodley JW Proc Natl Acad Sci U S A; 1972 Mar; 69(3):686-9. PubMed ID: 4551984 [TBL] [Abstract][Full Text] [Related]
58. Characterization of a limited trypsin digestion form of eukaryotic elongation factor 1 alpha. Kinzy TG; Merrick WC J Biol Chem; 1991 Mar; 266(7):4099-105. PubMed ID: 1999404 [TBL] [Abstract][Full Text] [Related]
59. Elongation factors EF Tu and EF G interact at related sites on ribosomes. Miller DL Proc Natl Acad Sci U S A; 1972 Mar; 69(3):752-5. PubMed ID: 4551986 [TBL] [Abstract][Full Text] [Related]
60. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Agirrezabala X; Frank J Q Rev Biophys; 2009 Aug; 42(3):159-200. PubMed ID: 20025795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]