These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9678717)
21. Interleukin-10 inhibits the in vitro proliferation of human activated leukemic CD5+ B-cells. Tangye SG; Weston KM; Raison RL Leuk Lymphoma; 1998 Sep; 31(1-2):121-30. PubMed ID: 9720722 [TBL] [Abstract][Full Text] [Related]
22. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Damle RN; Batliwalla FM; Ghiotto F; Valetto A; Albesiano E; Sison C; Allen SL; Kolitz J; Vinciguerra VP; Kudalkar P; Wasil T; Rai KR; Ferrarini M; Gregersen PK; Chiorazzi N Blood; 2004 Jan; 103(2):375-82. PubMed ID: 14504108 [TBL] [Abstract][Full Text] [Related]
23. Accelerated development of chronic lymphocytic leukemia in New Zealand Black mice expressing a low level of interferon regulatory factor 4. Ma S; Shukla V; Fang L; Gould KA; Joshi SS; Lu R J Biol Chem; 2013 Sep; 288(37):26430-40. PubMed ID: 23897826 [TBL] [Abstract][Full Text] [Related]
24. CD5 expression promotes IL-10 production through activation of the MAPK/Erk pathway and upregulation of TRPC1 channels in B lymphocytes. Garaud S; Taher TE; Debant M; Burgos M; Melayah S; Berthou C; Parikh K; Pers JO; Luque-Paz D; Chiocchia G; Peppelenbosch M; Isenberg DA; Youinou P; Mignen O; Renaudineau Y; Mageed RA Cell Mol Immunol; 2018 Feb; 15(2):158-170. PubMed ID: 27499044 [TBL] [Abstract][Full Text] [Related]
26. Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model. Rebolleda N; Losada-Fernandez I; Perez-Chacon G; Castejon R; Rosado S; Morado M; Vallejo-Cremades MT; Martinez A; Vargas-Nuñez JA; Perez-Aciego P PLoS One; 2016; 11(4):e0154159. PubMed ID: 27101369 [TBL] [Abstract][Full Text] [Related]
27. Survival and Immunosuppression Induced by Hepatocyte Growth Factor in Chronic Lymphocytic Leukemia. Giannoni P; Cutrona G; Totero D Curr Mol Med; 2017; 17(1):24-33. PubMed ID: 28231754 [TBL] [Abstract][Full Text] [Related]
28. Monoclonal antibody Ki-67 identifies B and T cells in cycle in chronic lymphocytic leukemia: correlation with disease activity. Cordone I; Matutes E; Catovsky D Leukemia; 1992 Sep; 6(9):902-6. PubMed ID: 1387694 [TBL] [Abstract][Full Text] [Related]
29. Natural phosphorylation of CD5 in chronic lymphocytic leukemia B cells and analysis of CD5-regulated genes in a B cell line suggest a role for CD5 in malignant phenotype. Gary-Gouy H; Sainz-Perez A; Marteau JB; Marfaing-Koka A; Delic J; Merle-Beral H; Galanaud P; Dalloul A J Immunol; 2007 Oct; 179(7):4335-44. PubMed ID: 17878328 [TBL] [Abstract][Full Text] [Related]
31. Cytokine expression in B-CLL in relation to disease progression and in vitro activation. Aguilar-Santelises M; Gigliotti D; Osorio LM; Santiago AD; Mellstedt H; Jondal M Med Oncol; 1999 Dec; 16(4):289-95. PubMed ID: 10618692 [TBL] [Abstract][Full Text] [Related]
32. Low IL-1 beta production in leukemic cells from progressive B cell chronic leukemia (B-CLL). Aguilar-Santelises M; Amador JF; Mellstedt H; Jondal M Leuk Res; 1989; 13(10):937-42. PubMed ID: 2586147 [TBL] [Abstract][Full Text] [Related]
33. Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model. Scaglione BJ; Salerno E; Balan M; Coffman F; Landgraf P; Abbasi F; Kotenko S; Marti GE; Raveche ES Br J Haematol; 2007 Dec; 139(5):645-57. PubMed ID: 17941951 [TBL] [Abstract][Full Text] [Related]
34. Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro. Zhu F; McCaw L; Spaner DE; Gorczynski RM Leuk Res; 2018 Mar; 66():28-38. PubMed ID: 29353760 [TBL] [Abstract][Full Text] [Related]
35. The New Zealand black mouse as a model for the development and progression of chronic lymphocytic leukemia. Salerno E; Yuan Y; Scaglione BJ; Marti G; Jankovic A; Mazzella F; Laurindo MF; Despres D; Baskar S; Rader C; Raveche E Cytometry B Clin Cytom; 2010; 78 Suppl 1(Suppl 1):S98-109. PubMed ID: 20839343 [TBL] [Abstract][Full Text] [Related]
36. Role of decreased production of interleukin-10 and interferon-gamma in spontaneous apoptosis of B-chronic lymphocytic leukemia lymphocytes in vitro. Djurdjevic P; Zelen I; Ristic P; Baskic D; Popovic S; Arsenijevic N Arch Med Res; 2009 Jul; 40(5):357-63. PubMed ID: 19766898 [TBL] [Abstract][Full Text] [Related]
37. Epigenetic alterations in a murine model for chronic lymphocytic leukemia. Chen SS; Sherman MH; Hertlein E; Johnson AJ; Teitell MA; Byrd JC; Plass C Cell Cycle; 2009 Nov; 8(22):3663-7. PubMed ID: 19901553 [TBL] [Abstract][Full Text] [Related]
38. 2D-gel analysis of proteins in chronic lymphocytic leukemia cells and normal B-lymphocytes. Saunders FK; Sharrard RM; Winfield DA; Lawry J; Goepel JR; Hancock BW; Goyns MH Leuk Res; 1993 Mar; 17(3):223-30. PubMed ID: 7680735 [TBL] [Abstract][Full Text] [Related]
39. PPAR-alpha is a therapeutic target for chronic lymphocytic leukemia. Spaner DE; Lee E; Shi Y; Wen F; Li Y; Tung S; McCaw L; Wong K; Gary-Gouy H; Dalloul A; Ceddia R; Gorzcynski R Leukemia; 2013 Apr; 27(5):1090-9. PubMed ID: 23160450 [TBL] [Abstract][Full Text] [Related]
40. Intracellular tumor necrosis factor production by T- and B-cells in B-cell chronic lymphocytic leukemia. Bojarska-Junak A; Rolinski J; Wasik-Szczepaneko E; Kaluzny Z; Dmoszynska A Haematologica; 2002 May; 87(5):490-9. PubMed ID: 12010662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]