These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9679103)

  • 1. Flight of the vampire: ontogenetic gait-transition in vampyroteuthis infernalis (Cephalopoda: vampyromorpha).
    Seibel BA; Thuesen EV; Childress JJ
    J Exp Biol; 1998 Aug; 201 (Pt 16)():2413-24. PubMed ID: 9679103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-limitation on predator-prey interactions: consequences for metabolism and locomotion of deep-sea cephalopods.
    Seibel BA; Thuesen EV; Childress JJ
    Biol Bull; 2000 Apr; 198(2):284-98. PubMed ID: 10786948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decline in Pelagic Cephalopod Metabolism With Habitat Depth Reflects Differences in Locomotory Efficiency.
    Seibel BA; Thuesen EV; Childress JJ; Gorodezky LA
    Biol Bull; 1997 Apr; 192(2):262-278. PubMed ID: 28581868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecophysiological influence on scaling of aerobic and anaerobic metabolism of pelagic gonatid squids.
    Rosa R; Trueblood L; Seibel BA
    Physiol Biochem Zool; 2009; 82(5):419-29. PubMed ID: 19265463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda).
    Golikov AV; Ceia FR; Sabirov RM; Ablett JD; Gleadall IG; Gudmundsson G; Hoving HJ; Judkins H; Pálsson J; Reid AL; Rosas-Luis R; Shea EK; Schwarz R; Xavier JC
    Sci Rep; 2019 Dec; 9(1):19099. PubMed ID: 31836823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial genome structure and evolution in the living fossil vampire squid, Vampyroteuthis infernalis, and extant cephalopods.
    Yokobori S; Lindsay DJ; Yoshida M; Tsuchiya K; Yamagishi A; Maruyama T; Oshima T
    Mol Phylogenet Evol; 2007 Aug; 44(2):898-910. PubMed ID: 17596970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New approaches for assessing squid fin motions: coupling proper orthogonal decomposition with volumetric particle tracking velocimetry.
    Bartol IK; Krueger PS; York CA; Thompson JT
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29789404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotion in sturgeon: function of the pectoral fins.
    Wilga CD; Lauder GV
    J Exp Biol; 1999; 202(Pt 18):2413-2432. PubMed ID: 10460730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pectoral fin coordination and gait transitions in steadily swimming juvenile reef fishes.
    Hale ME; Day RD; Thorsen DH; Westneat MW
    J Exp Biol; 2006 Oct; 209(Pt 19):3708-18. PubMed ID: 16985188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ontogenetic scaling of form and function in the spotted ratfish, Hydrolagus colliei (Chondrichthyes: Chimaeriformes): Fins, muscles, and locomotion.
    Higham TE; Seamone SG; Arnold A; Toews D; Janmohamed Z; Smith SJ; Rogers SM
    J Morphol; 2018 Oct; 279(10):1408-1418. PubMed ID: 30184247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swimming dynamics and propulsive efficiency of squids throughout ontogeny.
    Bartol IK; Krueger PS; Thompson JT; Stewart WJ
    Integr Comp Biol; 2008 Dec; 48(6):720-33. PubMed ID: 21669828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogenetic scaling of caudal fin shape in Squalus acanthias (Chondrichthyes, Elasmobranchii): a geometric morphometric analysis with implications for caudal fin functional morphology.
    Reiss KL; Bonnan MF
    Anat Rec (Hoboken); 2010 Jul; 293(7):1184-91. PubMed ID: 20583262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional traits explain trophic allometries of cephalopods.
    Murphy KJ; Pecl GT; Richards SA; Semmens JM; Revill AT; Suthers IM; Everett JD; Trebilco R; Blanchard JL
    J Anim Ecol; 2020 Nov; 89(11):2692-2703. PubMed ID: 32895913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse Gomphosus varius (Labridae).
    Walker J; Westneat M
    J Exp Biol; 1997; 200(Pt 11):1549-69. PubMed ID: 9319452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces.
    Drucker EG; Lauder GV
    J Exp Biol; 2005 Dec; 208(Pt 23):4479-94. PubMed ID: 16339868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrodynamics of jet propulsion swimming in hatchling and juvenile European common cuttlefish, Sepia officinalis.
    Gladman NW; Askew GN
    J Exp Biol; 2023 Sep; 226(18):. PubMed ID: 37655637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of underwater flight: The redistribution of pectoral fin rays, in manta rays and their relatives (Myliobatidae).
    Hall KC; Hundt PJ; Swenson JD; Summers AP; Crow KD
    J Morphol; 2018 Aug; 279(8):1155-1170. PubMed ID: 29878395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus).
    Korsmeyer KE; Steffensen JF; Herskin J
    J Exp Biol; 2002 May; 205(Pt 9):1253-63. PubMed ID: 11948202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partition of aerobic and anaerobic swimming costs related to gait transitions in a labriform swimmer.
    Svendsen JC; Tudorache C; Jordan AD; Steffensen JF; Aarestrup K; Domenici P
    J Exp Biol; 2010 Jul; 213(Pt 13):2177-83. PubMed ID: 20543115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.