BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9679160)

  • 1. The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis.
    Dart C; Leyland ML; Spencer PJ; Stanfield PR; Sutcliffe MJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):25-32. PubMed ID: 9679160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of Ag+ block of a potassium channel, murine kir2.1, on a cysteine residue in the selectivity filter.
    Dart C; Leyland ML; Barrett-Jolley R; Shelton PA; Spencer PJ; Conley EC; Sutcliffe MJ; Stanfield PR
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):15-24. PubMed ID: 9679159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+.
    Thompson GA; Leyland ML; Ashmole I; Sutcliffe MJ; Stanfield PR
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):231-40. PubMed ID: 10896714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis.
    Kubo Y; Yoshimichi M; Heinemann SH
    FEBS Lett; 1998 Sep; 435(1):69-73. PubMed ID: 9755861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis.
    Yamagishi T; Janecki M; Marban E; Tomaselli GF
    Biophys J; 1997 Jul; 73(1):195-204. PubMed ID: 9199784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1.
    Becker D; Dreyer I; Hoth S; Reid JD; Busch H; Lehnen M; Palme K; Hedrich R
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8123-8. PubMed ID: 8755614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning mutagenesis of the putative transmembrane segments of Kir2.1, an inward rectifier potassium channel.
    Collins A; Chuang H; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5456-60. PubMed ID: 9144259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
    Schwalbe RA; Bianchi L; Brown AM
    J Biol Chem; 1997 Oct; 272(40):25217-23. PubMed ID: 9312136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the pore of inwardly rectifying K(ATP) channels.
    Loussouarn G; Makhina EN; Rose T; Nichols CG
    J Biol Chem; 2000 Jan; 275(2):1137-44. PubMed ID: 10625656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state.
    Zhang HJ; Liu Y; Zühlke RD; Joho RH
    Biophys J; 1996 Dec; 71(6):3083-90. PubMed ID: 8968579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
    Yang J; Yu M; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1568-72. PubMed ID: 9037094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore mutations alter closing and opening kinetics in Shaker K+ channels.
    Molina A; Ortega-Sáenz P; Lopez-Barneo J
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):327-37. PubMed ID: 9575283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the P-region of a mammalian potassium channel (RCK1): a comparison with the Shaker potassium channel.
    Tytgat J
    Biochem Biophys Res Commun; 1994 Aug; 203(1):513-8. PubMed ID: 8074696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed glycosylation tagging of functional Kir2.1 reveals that the putative pore-forming segment is extracellular.
    Schwalbe RA; Rudin A; Xia SL; Wingo CS
    J Biol Chem; 2002 Jul; 277(27):24382-9. PubMed ID: 11991952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible role of a disulphide bond in forming functional Kir2.1 potassium channels.
    Leyland ML; Dart C; Spencer PJ; Sutcliffe MJ; Stanfield PR
    Pflugers Arch; 1999 Nov; 438(6):778-81. PubMed ID: 10591065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels.
    Schulteis CT; Nagaya N; Papazian DM
    Biochemistry; 1996 Sep; 35(37):12133-40. PubMed ID: 8810920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.