These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9679160)

  • 1. The selectivity filter of a potassium channel, murine kir2.1, investigated using scanning cysteine mutagenesis.
    Dart C; Leyland ML; Spencer PJ; Stanfield PR; Sutcliffe MJ
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):25-32. PubMed ID: 9679160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of Ag+ block of a potassium channel, murine kir2.1, on a cysteine residue in the selectivity filter.
    Dart C; Leyland ML; Barrett-Jolley R; Shelton PA; Spencer PJ; Conley EC; Sutcliffe MJ; Stanfield PR
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):15-24. PubMed ID: 9679159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residues beyond the selectivity filter of the K+ channel kir2.1 regulate permeation and block by external Rb+ and Cs+.
    Thompson GA; Leyland ML; Ashmole I; Sutcliffe MJ; Stanfield PR
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):231-40. PubMed ID: 10896714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis.
    Kubo Y; Yoshimichi M; Heinemann SH
    FEBS Lett; 1998 Sep; 435(1):69-73. PubMed ID: 9755861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology of the P segments in the sodium channel pore revealed by cysteine mutagenesis.
    Yamagishi T; Janecki M; Marban E; Tomaselli GF
    Biophys J; 1997 Jul; 73(1):195-204. PubMed ID: 9199784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in voltage activation, Cs+ sensitivity, and ion permeability in H5 mutants of the plant K+ channel KAT1.
    Becker D; Dreyer I; Hoth S; Reid JD; Busch H; Lehnen M; Palme K; Hedrich R
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8123-8. PubMed ID: 8755614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning mutagenesis of the putative transmembrane segments of Kir2.1, an inward rectifier potassium channel.
    Collins A; Chuang H; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5456-60. PubMed ID: 9144259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the kidney potassium channel ROMK1. Glycosylation of the pore signature sequence and the COOH terminus.
    Schwalbe RA; Bianchi L; Brown AM
    J Biol Chem; 1997 Oct; 272(40):25217-23. PubMed ID: 9312136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of the pore of inwardly rectifying K(ATP) channels.
    Loussouarn G; Makhina EN; Rose T; Nichols CG
    J Biol Chem; 2000 Jan; 275(2):1137-44. PubMed ID: 10625656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state.
    Zhang HJ; Liu Y; Zühlke RD; Joho RH
    Biophys J; 1996 Dec; 71(6):3083-90. PubMed ID: 8968579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel.
    Yang J; Yu M; Jan YN; Jan LY
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1568-72. PubMed ID: 9037094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore mutations alter closing and opening kinetics in Shaker K+ channels.
    Molina A; Ortega-Sáenz P; Lopez-Barneo J
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):327-37. PubMed ID: 9575283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the P-region of a mammalian potassium channel (RCK1): a comparison with the Shaker potassium channel.
    Tytgat J
    Biochem Biophys Res Commun; 1994 Aug; 203(1):513-8. PubMed ID: 8074696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel.
    Silverman SK; Lester HA; Dougherty DA
    Biophys J; 1998 Sep; 75(3):1330-9. PubMed ID: 9726934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed glycosylation tagging of functional Kir2.1 reveals that the putative pore-forming segment is extracellular.
    Schwalbe RA; Rudin A; Xia SL; Wingo CS
    J Biol Chem; 2002 Jul; 277(27):24382-9. PubMed ID: 11991952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible role of a disulphide bond in forming functional Kir2.1 potassium channels.
    Leyland ML; Dart C; Spencer PJ; Sutcliffe MJ; Stanfield PR
    Pflugers Arch; 1999 Nov; 438(6):778-81. PubMed ID: 10591065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels.
    Schulteis CT; Nagaya N; Papazian DM
    Biochemistry; 1996 Sep; 35(37):12133-40. PubMed ID: 8810920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.