These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9679183)

  • 1. Effect of sodium perturbations on rat chemoreceptor spike generation: implications for a Poisson model.
    Donnelly DF; Panisello JM; Boggs D
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):301-11. PubMed ID: 9679183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthodromic spike generation from electrical stimuli in the rat carotid body: implications for the afferent spike generation process.
    Donnelly DF
    J Physiol; 2007 Apr; 580(Pt 1):275-84. PubMed ID: 17234702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous action potential generation due to persistent sodium channel currents in simulated carotid body afferent fibers.
    Donnelly DF
    J Appl Physiol (1985); 2008 May; 104(5):1394-401. PubMed ID: 18309093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in the magnitude and activation characteristics of Na(+) currents of petrosal neurons projecting to the carotid body.
    Donnelly DF
    Respir Physiol Neurobiol; 2011 Aug; 177(3):284-93. PubMed ID: 21596159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-activated potassium conductance participates in the depolarizing afterpotential following a single action potential in rat hippocampal CA1 pyramidal cells.
    Liu X; Stan Leung L
    Brain Res; 2004 Oct; 1023(2):185-92. PubMed ID: 15374744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Na+ channel involvement in the release of catecholamines from chemoreceptor cells of the carotid body.
    Rocher A; Obeso A; Herreros B; González C
    Adv Exp Med Biol; 1994; 360():201-4. PubMed ID: 7872086
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrophysiological evidence for tetrodotoxin-resistant sodium channels in slowly conducting dural sensory fibers.
    Strassman AM; Raymond SA
    J Neurophysiol; 1999 Feb; 81(2):413-24. PubMed ID: 10036248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular potassium and chemosensitivity in the rat carotid body, in vitro.
    Pepper DR; Landauer RC; Kumar P
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):833-43. PubMed ID: 8799903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices.
    Clark BA; Barbour B
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):335-50. PubMed ID: 9263914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium Channel Na
    Klein AH; Vyshnevska A; Hartke TV; De Col R; Mankowski JL; Turnquist B; Bosmans F; Reeh PW; Schmelz M; Carr RW; Ringkamp M
    J Neurosci; 2017 May; 37(20):5204-5214. PubMed ID: 28450535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons.
    Mackenzie PJ; Murphy TH
    J Neurophysiol; 1998 Oct; 80(4):2089-101. PubMed ID: 9772263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C fiber generates a slow Na+ spike in the frog sciatic nerve.
    Kobayashi J; Ohta M; Terada Y
    Neurosci Lett; 1993 Nov; 162(1-2):93-6. PubMed ID: 8121645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of TTX-sensitive and TTX-resistant sodium channels in Adelta- and C-fiber conduction and synaptic transmission.
    Pinto V; Derkach VA; Safronov BV
    J Neurophysiol; 2008 Feb; 99(2):617-28. PubMed ID: 18057109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An important functional role of persistent Na+ current in carotid body hypoxia transduction.
    Faustino EV; Donnelly DF
    J Appl Physiol (1985); 2006 Oct; 101(4):1076-84. PubMed ID: 16778007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated Na(+) channels in chemoreceptor afferent neurons--potential roles and changes with development.
    Donnelly DF
    Respir Physiol Neurobiol; 2013 Jan; 185(1):67-74. PubMed ID: 22906578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current-clamp analysis of a time-dependent rectification in rat optic nerve.
    Eng DL; Gordon TR; Kocsis JD; Waxman SG
    J Physiol; 1990 Feb; 421():185-202. PubMed ID: 2348391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of the action potential into a Na-channel spike and a K-channel spike by tetrodotoxin and by tetraethylammonium ion in squid giant axons internally perfused with dilute Na-salt solutions.
    Inoue I
    J Gen Physiol; 1980 Sep; 76(3):337-54. PubMed ID: 6252279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells.
    Lipowsky R; Gillessen T; Alzheimer C
    J Neurophysiol; 1996 Oct; 76(4):2181-91. PubMed ID: 8899593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and developmental changes of Na+ currents of petrosal neurons with projections to the carotid body.
    Cummins TR; Dib-Hajj SD; Waxman SG; Donnelly DF
    J Neurophysiol; 2002 Dec; 88(6):2993-3002. PubMed ID: 12466424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.