These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9679228)

  • 21. Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart.
    Jouk PS; Usson Y; Michalowicz G; Grossi L
    Anat Embryol (Berl); 2000 Aug; 202(2):103-18. PubMed ID: 10985430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transverse isotropic modelling of left-ventricle passive filling: Mechanical characterization for epicardial biomaterial manufacturing.
    Jehl JP; Dan P; Voignier A; Tran N; Bastogne T; Maureira P; Cleymand F
    J Mech Behav Biomed Mater; 2021 Jul; 119():104492. PubMed ID: 33892336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia.
    Johnston PR
    Comput Methods Biomech Biomed Engin; 2010; 13(2):157-70. PubMed ID: 19639486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An inverse finite element method for determining the tissue compressibility of human left ventricular wall during the cardiac cycle.
    Hassaballah AI; Hassan MA; Mardi AN; Hamdi M
    PLoS One; 2013; 8(12):e82703. PubMed ID: 24367544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contraction dynamics and function of the muscle-tendon complex depend on the muscle fibre-tendon length ratio: a simulation study.
    Mörl F; Siebert T; Häufle D
    Biomech Model Mechanobiol; 2016 Feb; 15(1):245-58. PubMed ID: 26038176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Factors influencing left-ventricular stiffness.
    Yettram AL; Grewal BS; Dawson JR; Gibson DG
    J Biomed Eng; 1992 Jan; 14(1):21-6. PubMed ID: 1569735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An analysis of the spatial arrangement of the myocardial aggregates making up the wall of the left ventricle.
    Dorri F; Niederer PF; Redmann K; Lunkenheimer PP; Cryer CW; Anderson RH
    Eur J Cardiothorac Surg; 2007 Mar; 31(3):430-7. PubMed ID: 17194601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An integrated electromechanical-growth heart model for simulating cardiac therapies.
    Lee LC; Sundnes J; Genet M; Wenk JF; Wall ST
    Biomech Model Mechanobiol; 2016 Aug; 15(4):791-803. PubMed ID: 26376641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Passive diastolic modelling of human ventricles: Effects of base movement and geometrical heterogeneity.
    Palit A; Franciosa P; Bhudia SK; Arvanitis TN; Turley GA; Williams MA
    J Biomech; 2017 Feb; 52():95-105. PubMed ID: 28065473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformation of the diastolic left ventricle. Nonlinear elastic effects.
    Janz RF; Grimm AF
    Biophys J; 1973 Jul; 13(7):689-704. PubMed ID: 4715584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The shortening fraction of myocardial fibers and its layered distribution, as derived from cine-MR imaged left ventriculograms. An approach for evaluating globar left ventricular function.
    Kvam G; Dahle H; Nordrehaug JE; Randa TI; Tillung T
    Acta Radiol; 1997 May; 38(3):391-9. PubMed ID: 9191429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spread of excitation in 3-D models of the anisotropic cardiac tissue. II. Effects of fiber architecture and ventricular geometry.
    Franzone PC; Guerri L; Pennacchio M; Taccardi B
    Math Biosci; 1998 Jan; 147(2):131-71. PubMed ID: 9433061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer simulation of ventricular wall motion using the finite element method.
    Watanabe T; Ohtake T; Kosaka N; Momose T; Nishikawa J; Iio M
    Radiat Med; 1988; 6(4):165-70. PubMed ID: 3212216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats.
    David Gomez A; Bull DA; Hsu EW
    J Biomech Eng; 2015 Oct; 137(10):101010. PubMed ID: 26299478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active contraction of the cardiac ventricle and distortion of the microstructural architecture.
    Pezzuto S; Ambrosi D
    Int J Numer Method Biomed Eng; 2014 Dec; 30(12):1578-96. PubMed ID: 25319381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A two-phase finite element model of the diastolic left ventricle.
    Huyghe JM; van Campen DH; Arts T; Heethaar RM
    J Biomech; 1991; 24(7):527-38. PubMed ID: 1880137
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determinants of left ventricular shape change during filling.
    Holmes JW
    J Biomech Eng; 2004 Feb; 126(1):98-103. PubMed ID: 15171135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element analysis of myocardial diastolic function using three-dimensional echocardiographic reconstructions: application of a new method for study of acute ischemia in dogs.
    McPherson DD; Skorton DJ; Kodiyalam S; Petree L; Noel MP; Kieso R; Kerber RE; Collins SM; Chandran KB
    Circ Res; 1987 May; 60(5):674-82. PubMed ID: 3594746
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-linear myofilament elasticity in frog intact muscle fibres.
    Edman KA
    J Exp Biol; 2009 Apr; 212(Pt 8):1115-9. PubMed ID: 19329745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.