These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9679539)

  • 1. An evolutionary approach to the design of glutathione-linked enzymes.
    Mannervik B; Cameron AD; Fernandez E; Gustafsson A; Hansson LO; Jemth P; Jiang F; Jones TA; Larsson AK; Nilsson LO; Olin B; Pettersson PL; Ridderström M; Stenberg G; Widersten M
    Chem Biol Interact; 1998 Apr; 111-112():15-21. PubMed ID: 9679539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.
    Cameron AD; Olin B; Ridderström M; Mannervik B; Jones TA
    EMBO J; 1997 Jun; 16(12):3386-95. PubMed ID: 9218781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes.
    Deponte M
    Biochim Biophys Acta; 2013 May; 1830(5):3217-66. PubMed ID: 23036594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion.
    Iozef R; Rahlfs S; Chang T; Schirmer H; Becker K
    FEBS Lett; 2003 Nov; 554(3):284-8. PubMed ID: 14623080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
    Saint-Jean AP; Phillips KR; Creighton DJ; Stone MJ
    Biochemistry; 1998 Jul; 37(29):10345-53. PubMed ID: 9671502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences among human tumor cell lines in the expression of glutathione transferases and other glutathione-linked enzymes.
    Castro VM; Söderström M; Carlberg I; Widersten M; Platz A; Mannervik B
    Carcinogenesis; 1990 Sep; 11(9):1569-76. PubMed ID: 2401046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmutation of human glutathione transferase A2-2 with peroxidase activity into an efficient steroid isomerase.
    Pettersson PL; Johansson AS; Mannervik B
    J Biol Chem; 2002 Aug; 277(33):30019-22. PubMed ID: 12023294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based design and application of an engineered glutathione transferase for the development of an optical biosensor for pesticides determination.
    Chronopoulou EG; Vlachakis D; Papageorgiou AC; Ataya FS; Labrou NE
    Biochim Biophys Acta Gen Subj; 2019 Mar; 1863(3):565-576. PubMed ID: 30590099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast glyoxalase I is a monomeric enzyme with two active sites.
    Frickel EM; Jemth P; Widersten M; Mannervik B
    J Biol Chem; 2001 Jan; 276(3):1845-9. PubMed ID: 11050082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of phage display and transition-state analogs to select enzyme variants with altered catalytic properties: glutathione transferase as an example.
    Widersten M; Hansson LO; Tronstad L; Mannervik B
    Methods Enzymol; 2000; 328():389-404. PubMed ID: 11075356
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members.
    Kurtovic S; Modén O; Shokeer A; Mannervik B
    J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of glyoxalase I from soybean.
    Skipsey M; Andrews CJ; Townson JK; Jepson I; Edwards R
    Arch Biochem Biophys; 2000 Feb; 374(2):261-8. PubMed ID: 10666306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of Escherichia coli glutathione S-transferase complexed with glutathione sulfonate: catalytic roles of Cys10 and His106.
    Nishida M; Harada S; Noguchi S; Satow Y; Inoue H; Takahashi K
    J Mol Biol; 1998 Aug; 281(1):135-47. PubMed ID: 9680481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The primary structure of monomeric yeast glyoxalase I indicates a gene duplication resulting in two similar segments homologous with the subunit of dimeric human glyoxalase I.
    Ridderström M; Mannervik B
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):1005-6. PubMed ID: 8670139
    [No Abstract]   [Full Text] [Related]  

  • 15. Crystal structure of herbicide-detoxifying maize glutathione S-transferase-I in complex with lactoylglutathione: evidence for an induced-fit mechanism.
    Neuefeind T; Huber R; Dasenbrock H; Prade L; Bieseler B
    J Mol Biol; 1997 Dec; 274(4):446-53. PubMed ID: 9417926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione-mediated detoxification systems in plants.
    Dixon DP; Cummins L; Cole DJ; Edwards R
    Curr Opin Plant Biol; 1998 Jun; 1(3):258-66. PubMed ID: 10066594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.
    Ladner JE; Parsons JF; Rife CL; Gilliland GL; Armstrong RN
    Biochemistry; 2004 Jan; 43(2):352-61. PubMed ID: 14717589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of action of glutathione-dependent enzymes.
    Douglas KT
    Adv Enzymol Relat Areas Mol Biol; 1987; 59():103-67. PubMed ID: 2880477
    [No Abstract]   [Full Text] [Related]  

  • 19. Glutathione transferases with novel active sites isolated by phage display from a library of random mutants.
    Widersten M; Mannervik B
    J Mol Biol; 1995 Jul; 250(2):115-22. PubMed ID: 7608963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-substrate-activity space and quasi-species in enzyme evolution: Ohno's dilemma, promiscuity and functional orthogonality.
    Mannervik B; Runarsdottir A; Kurtovic S
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):740-4. PubMed ID: 19614586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.