These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9679542)

  • 1. Mechanistic imperative for the evolution of a metalloglutathione transferase of the vicinal oxygen chelate superfamily.
    Laughlin LT; Bernat BA; Armstrong RN
    Chem Biol Interact; 1998 Apr; 111-112():41-50. PubMed ID: 9679542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases.
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1997 Mar; 36(11):3050-5. PubMed ID: 9115979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the fosfomycin resistance protein (FosA).
    Bernat BA; Laughlin LT; Armstrong RN
    Biochemistry; 1999 Jun; 38(23):7462-9. PubMed ID: 10360943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fosfomycin resistance proteins: a nexus of glutathione transferases and epoxide hydrolases in a metalloenzyme superfamily.
    Rigsby RE; Fillgrove KL; Beihoffer LA; Armstrong RN
    Methods Enzymol; 2005; 401():367-79. PubMed ID: 16399398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic imperatives for the evolution of glutathione transferases.
    Armstrong RN
    Curr Opin Chem Biol; 1998 Oct; 2(5):618-23. PubMed ID: 9818188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic diversity in a metalloenzyme superfamily.
    Armstrong RN
    Biochemistry; 2000 Nov; 39(45):13625-32. PubMed ID: 11076500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance.
    Hayes JD; Pulford DJ
    Crit Rev Biochem Mol Biol; 1995; 30(6):445-600. PubMed ID: 8770536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elementary steps in the acquisition of Mn2+ by the fosfomycin resistance protein (FosA).
    Bernat BA; Armstrong RN
    Biochemistry; 2001 Oct; 40(42):12712-8. PubMed ID: 11601996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPR study of substrate binding to the Mn(II) active site of the bacterial antibiotic resistance enzyme FosA: a better way to examine Mn(II).
    Smoukov SK; Telser J; Bernat BA; Rife CL; Armstrong RN; Hoffman BM
    J Am Chem Soc; 2002 Mar; 124(10):2318-26. PubMed ID: 11878987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenies of glutathione transferase families.
    Pearson WR
    Methods Enzymol; 2005; 401():186-204. PubMed ID: 16399387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily.
    Sheehan D; Meade G; Foley VM; Dowd CA
    Biochem J; 2001 Nov; 360(Pt 1):1-16. PubMed ID: 11695986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatic and enzymatic characterization of the MAPEG superfamily.
    Bresell A; Weinander R; Lundqvist G; Raza H; Shimoji M; Sun TH; Balk L; Wiklund R; Eriksson J; Jansson C; Persson B; Jakobsson PJ; Morgenstern R
    FEBS J; 2005 Apr; 272(7):1688-703. PubMed ID: 15794756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily.
    He P; Moran GR
    J Inorg Biochem; 2011 Oct; 105(10):1259-72. PubMed ID: 21820381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.
    Ladner JE; Parsons JF; Rife CL; Gilliland GL; Armstrong RN
    Biochemistry; 2004 Jan; 43(2):352-61. PubMed ID: 14717589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods.
    Ji X; von Rosenvinge EC; Johnson WW; Tomarev SI; Piatigorsky J; Armstrong RN; Gilliland GL
    Biochemistry; 1995 Apr; 34(16):5317-28. PubMed ID: 7727393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trimeric microsomal glutathione transferase 2 displays one third of the sites reactivity.
    Ahmad S; Thulasingam M; Palombo I; Daley DO; Johnson KA; Morgenstern R; Haeggström JZ; Rinaldo-Matthis A
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1365-71. PubMed ID: 26066610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic characterization of human microsomal glutathione S-transferase 2: identification of rate-limiting steps.
    Ahmad S; Niegowski D; Wetterholm A; Haeggström JZ; Morgenstern R; Rinaldo-Matthis A
    Biochemistry; 2013 Mar; 52(10):1755-64. PubMed ID: 23409838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of GSTs in the tolerance of Rhizobium leguminosarum to cadmium.
    Corticeiro S; Freitas R; Figueira E
    Biometals; 2013 Dec; 26(6):879-86. PubMed ID: 23907727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression cloning of a cDNA for human leukotriene C4 synthase, an integral membrane protein conjugating reduced glutathione to leukotriene A4.
    Lam BK; Penrose JF; Freeman GJ; Austen KF
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7663-7. PubMed ID: 8052639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme control of small-molecule coordination in FosA as revealed by 31P pulsed ENDOR and ESE-EPR.
    Walsby CJ; Telser J; Rigsby RE; Armstrong RN; Hoffman BM
    J Am Chem Soc; 2005 Jun; 127(23):8310-9. PubMed ID: 15941264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.