These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 9680293)
1. Gain adaptation and phase dynamics of compensatory eye movements in mice. Koekkoek SK; v Alphen AM; vd Burg J; Grosveld F; Galjart N; De Zeeuw CI Genes Funct; 1997 Jun; 1(3):175-90. PubMed ID: 9680293 [TBL] [Abstract][Full Text] [Related]
2. Recording eye movements in mice: a new approach to investigate the molecular basis of cerebellar control of motor learning and motor timing. de Zeeuw CI; van Alphen AM; Koekkoek SK; Buharin E; Coesmans MP; Morpurgo MM; van den Burg J Otolaryngol Head Neck Surg; 1998 Sep; 119(3):193-203. PubMed ID: 9743075 [TBL] [Abstract][Full Text] [Related]
3. Defective control and adaptation of reflex eye movements in mutant mice deficient in either the glutamate receptor delta2 subunit or Purkinje cells. Katoh A; Yoshida T; Himeshima Y; Mishina M; Hirano T Eur J Neurosci; 2005 Mar; 21(5):1315-26. PubMed ID: 15813941 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms underlying vestibulo-cerebellar motor learning in mice depend on movement direction. Voges K; Wu B; Post L; Schonewille M; De Zeeuw CI J Physiol; 2017 Aug; 595(15):5301-5326. PubMed ID: 28586131 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. Pastor AM; De la Cruz RR; Baker R Prog Brain Res; 1997; 114():359-81. PubMed ID: 9193155 [TBL] [Abstract][Full Text] [Related]
6. Vestibular compensation after unilateral labyrinthectomy: normal versus cerebellar dysfunctional mice. Aleisa M; Zeitouni AG; Cullen KE J Otolaryngol; 2007 Dec; 36(6):315-21. PubMed ID: 18076840 [TBL] [Abstract][Full Text] [Related]
7. Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Nagao S; Kitazawa H Neuroscience; 2003; 118(2):563-70. PubMed ID: 12699790 [TBL] [Abstract][Full Text] [Related]
8. Role of the flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex. Highstein SM Otolaryngol Head Neck Surg; 1998 Sep; 119(3):212-20. PubMed ID: 9743077 [TBL] [Abstract][Full Text] [Related]
9. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. De Zeeuw CI; Hansel C; Bian F; Koekkoek SK; van Alphen AM; Linden DJ; Oberdick J Neuron; 1998 Mar; 20(3):495-508. PubMed ID: 9539124 [TBL] [Abstract][Full Text] [Related]
10. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation. Inagaki K; Hirata Y Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617 [TBL] [Abstract][Full Text] [Related]
11. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. Hirata Y; Highstein SM J Neurophysiol; 2001 May; 85(5):2267-88. PubMed ID: 11353040 [TBL] [Abstract][Full Text] [Related]
12. A cerebellar learning model of vestibulo-ocular reflex adaptation in wild-type and mutant mice. Clopath C; Badura A; De Zeeuw CI; Brunel N J Neurosci; 2014 May; 34(21):7203-15. PubMed ID: 24849355 [TBL] [Abstract][Full Text] [Related]
13. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Sheliga BM; Yakushin SB; Silvers A; Raphan T; Cohen B Ann N Y Acad Sci; 1999 May; 871():94-122. PubMed ID: 10372065 [TBL] [Abstract][Full Text] [Related]
14. Motor learning in common marmosets: vestibulo-ocular reflex adaptation and its sensitivity to inhibitors of Purkinje cell long-term depression. Anzai M; Nagao S Neurosci Res; 2014 Jun; 83():33-42. PubMed ID: 24768746 [TBL] [Abstract][Full Text] [Related]
15. Vestibular compensation in glutamate receptor delta-2 subunit knockout mice: dynamic property of vestibulo-ocular reflex. Murai N; Tsuji J; Ito J; Mishina M; Hirano T Eur Arch Otorhinolaryngol; 2004 Feb; 261(2):82-6. PubMed ID: 12851830 [TBL] [Abstract][Full Text] [Related]
16. Role of protein kinase C family in the cerebellum-dependent adaptive learning of horizontal optokinetic response eye movements in mice. Shutoh F; Katoh A; Ohki M; Itohara S; Tonegawa S; Nagao S Eur J Neurosci; 2003 Jul; 18(1):134-42. PubMed ID: 12859346 [TBL] [Abstract][Full Text] [Related]
17. Cerebellar signatures of vestibulo-ocular reflex motor learning. Blazquez PM; Hirata Y; Heiney SA; Green AM; Highstein SM J Neurosci; 2003 Oct; 23(30):9742-51. PubMed ID: 14586001 [TBL] [Abstract][Full Text] [Related]
18. Cerebellar role in adaptation of the goldfish vestibuloocular reflex. Pastor AM; de la Cruz RR; Baker R J Neurophysiol; 1994 Sep; 72(3):1383-94. PubMed ID: 7807219 [TBL] [Abstract][Full Text] [Related]
19. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Shutoh F; Ohki M; Kitazawa H; Itohara S; Nagao S Neuroscience; 2006 May; 139(2):767-77. PubMed ID: 16458438 [TBL] [Abstract][Full Text] [Related]
20. Cerebellar LTD facilitates but is not essential for long-term adaptation of the vestibulo-ocular reflex. van Alphen AM; De Zeeuw CI Eur J Neurosci; 2002 Aug; 16(3):486-90. PubMed ID: 12193192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]