These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid. Aagaard C; Leviev I; Aravalli RN; Forterre P; Prieur D; Garrett RA FEMS Microbiol Rev; 1996 May; 18(2-3):93-104. PubMed ID: 8639332 [TBL] [Abstract][Full Text] [Related]
3. Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Lucas S; Toffin L; Zivanovic Y; Charlier D; Moussard H; Forterre P; Prieur D; Erauso G Appl Environ Microbiol; 2002 Nov; 68(11):5528-36. PubMed ID: 12406746 [TBL] [Abstract][Full Text] [Related]
4. Improvement of a Sulfolobus-E. coli shuttle vector for heterologous gene expression in Sulfolobus acidocaldarius. Hwang S; Choi KH; Yoon N; Cha J J Microbiol Biotechnol; 2015 Feb; 25(2):196-205. PubMed ID: 25293629 [TBL] [Abstract][Full Text] [Related]
5. Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Berkner S; Grogan D; Albers SV; Lipps G Nucleic Acids Res; 2007; 35(12):e88. PubMed ID: 17576673 [TBL] [Abstract][Full Text] [Related]
6. Disruption of the gene encoding restriction endonuclease SuaI and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius. Suzuki S; Kurosawa N Extremophiles; 2016 Mar; 20(2):139-48. PubMed ID: 26791382 [TBL] [Abstract][Full Text] [Related]
7. Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. Contursi P; Cannio R; Prato S; Fiorentino G; Rossi M; Bartolucci S FEMS Microbiol Lett; 2003 Jan; 218(1):115-20. PubMed ID: 12583906 [TBL] [Abstract][Full Text] [Related]
8. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Jonuscheit M; Martusewitsch E; Stedman KM; Schleper C Mol Microbiol; 2003 Jun; 48(5):1241-52. PubMed ID: 12787352 [TBL] [Abstract][Full Text] [Related]
9. Defining components of the chromosomal origin of replication of the hyperthermophilic archaeon Pyrococcus furiosus needed for construction of a stable replicating shuttle vector. Farkas J; Chung D; DeBarry M; Adams MW; Westpheling J Appl Environ Microbiol; 2011 Sep; 77(18):6343-9. PubMed ID: 21784908 [TBL] [Abstract][Full Text] [Related]
10. Overexpression in Escherichia coli of the AT-rich trpA and trpB genes from the hyperthermophilic archaeon Pyrococcus furiosus. Ishida M; Oshima T; Yutani K FEMS Microbiol Lett; 2002 Nov; 216(2):179-83. PubMed ID: 12435500 [TBL] [Abstract][Full Text] [Related]
11. An autonomously replicating transforming vector for Sulfolobus solfataricus. Cannio R; Contursi P; Rossi M; Bartolucci S J Bacteriol; 1998 Jun; 180(12):3237-40. PubMed ID: 9620978 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in genetic analyses of hyperthermophilic archaea and bacteria. Noll KM; Vargas M Arch Microbiol; 1997 Aug; 168(2):73-80. PubMed ID: 9238098 [TBL] [Abstract][Full Text] [Related]
13. Genetic tools for Sulfolobus spp.: vectors and first applications. Berkner S; Lipps G Arch Microbiol; 2008 Sep; 190(3):217-30. PubMed ID: 18542925 [TBL] [Abstract][Full Text] [Related]
14. Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Dabrowski S; Kur J Protein Expr Purif; 1998 Oct; 14(1):131-8. PubMed ID: 9758761 [TBL] [Abstract][Full Text] [Related]
15. Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Berkner S; Wlodkowski A; Albers SV; Lipps G Extremophiles; 2010 May; 14(3):249-59. PubMed ID: 20221889 [TBL] [Abstract][Full Text] [Related]
16. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Aucelli T; Contursi P; Girfoglio M; Rossi M; Cannio R Nucleic Acids Res; 2006; 34(17):e114. PubMed ID: 16971457 [TBL] [Abstract][Full Text] [Related]
17. Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli/lambdaRed and Sulfolobus acidocaldarius recombination systems. Grogan DW; Stengel KR Mol Microbiol; 2008 Sep; 69(5):1255-65. PubMed ID: 18631240 [TBL] [Abstract][Full Text] [Related]
18. The tRNA(guanine-26,N2-N2) methyltransferase (Trm1) from the hyperthermophilic archaeon Pyrococcus furiosus: cloning, sequencing of the gene and its expression in Escherichia coli. Constantinesco F; Benachenhou N; Motorin Y; Grosjean H Nucleic Acids Res; 1998 Aug; 26(16):3753-61. PubMed ID: 9685492 [TBL] [Abstract][Full Text] [Related]
19. Identification of short 'eukaryotic' Okazaki fragments synthesized from a prokaryotic replication origin. Matsunaga F; Norais C; Forterre P; Myllykallio H EMBO Rep; 2003 Feb; 4(2):154-8. PubMed ID: 12612604 [TBL] [Abstract][Full Text] [Related]
20. High yield production and purification of two recombinant thermostable phosphotriesterase-like lactonases from Sulfolobus acidocaldarius and Sulfolobus solfataricus useful as bioremediation tools and bioscavengers. Restaino OF; Borzacchiello MG; Scognamiglio I; Fedele L; Alfano A; Porzio E; Manco G; De Rosa M; Schiraldi C BMC Biotechnol; 2018 Mar; 18(1):18. PubMed ID: 29558934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]