These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 9680310)

  • 21. [Physiology of organotrophic and lithotrophic growth of the thermophilic iron-reducing bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus].
    Gavrilov SN; Bonch-Osmolovskaia EA; Slobodkin AI
    Mikrobiologiia; 2003; 72(2):161-7. PubMed ID: 12751237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens.
    Yamada C; Kato S; Kimura S; Ishii M; Igarashi Y
    FEMS Microbiol Ecol; 2014 Sep; 89(3):637-45. PubMed ID: 24920412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic redox cycling of iron by freshwater sediment microorganisms.
    Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE
    Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community.
    Yokoyama H; Ishida M; Yamashita T
    J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possibility of anoxic ferric ammonium oxidation.
    Sawayama S
    J Biosci Bioeng; 2006 Jan; 101(1):70-2. PubMed ID: 16503294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrilotriacetate stimulation of anaerobic Fe(III) respiration by mobilization of humic materials in soil.
    Luu Y; Ramsay BA; Ramsay JA
    Appl Environ Microbiol; 2003 Sep; 69(9):5255-62. PubMed ID: 12957911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.
    Nevin KP; Lovley DR
    Appl Environ Microbiol; 2002 May; 68(5):2294-9. PubMed ID: 11976100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ferric iron reduction-linked growth yields of Shewanella putrefaciens MR-1.
    Myers CR; Myers JM
    J Appl Bacteriol; 1994 Mar; 76(3):253-8. PubMed ID: 8157545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic versus nonenzymatic conversions during the reduction of EDTA-chelated Fe(III) in BioDeNOx reactors.
    Van Der Maas P; Peng S; Klapwijk B; Lens P
    Environ Sci Technol; 2005 Apr; 39(8):2616-23. PubMed ID: 15884357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western siberia.
    Slobodkin AI; Jeanthon C; L'Haridon S; Nazina T; Miroshnichenko M; Bonch-Osmolovskaya E
    Curr Microbiol; 1999 Aug; 39(2):99-102. PubMed ID: 10398835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe(III) and S0 reduction by Pelobacter carbinolicus.
    Lovley DR; Phillips EJ; Lonergan DJ; Widman PK
    Appl Environ Microbiol; 1995 Jun; 61(6):2132-8. PubMed ID: 7793935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe(II)EDTA-NO reduction by a newly isolated thermophilic Anoxybacillus sp. HA from a rotating drum biofilter for NOx removal.
    Chen J; Li Y; Hao HH; Zheng J; Chen JM
    J Microbiol Methods; 2015 Feb; 109():129-33. PubMed ID: 25541258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methanol utilization in defined mixed cultures of thermophilic anaerobes in the presence of sulfate.
    Goorissen HP; Stams AJ; Hansen TA
    FEMS Microbiol Ecol; 2004 Sep; 49(3):489-94. PubMed ID: 19712297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbiological evidence for Fe(III) reduction on early Earth.
    Vargas M; Kashefi K; Blunt-Harris EL; Lovley DR
    Nature; 1998 Sep; 395(6697):65-7. PubMed ID: 9738498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.
    Lovley DR; Phillips EJ
    Appl Environ Microbiol; 1988 Jun; 54(6):1472-80. PubMed ID: 16347658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1.
    Dalla Vecchia E; Suvorova EI; Maillard J; Bernier-Latmani R
    Geobiology; 2014 Jan; 12(1):48-61. PubMed ID: 24279507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.
    Bernstein HC; Beam JP; Kozubal MA; Carlson RP; Inskeep WP
    Environ Microbiol; 2013 Aug; 15(8):2360-70. PubMed ID: 23516993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.
    Ding YH; Hixson KK; Aklujkar MA; Lipton MS; Smith RD; Lovley DR; Mester T
    Biochim Biophys Acta; 2008 Dec; 1784(12):1935-41. PubMed ID: 18638577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy.
    Bassez MP
    Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.