These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dynamics of free chains in polymer nanocomposites. Picu RC; Rakshit A J Chem Phys; 2007 Apr; 126(14):144909. PubMed ID: 17444745 [TBL] [Abstract][Full Text] [Related]
3. Quantifying chain reptation in entangled polymer melts: topological and dynamical mapping of atomistic simulation results onto the tube model. Stephanou PS; Baig C; Tsolou G; Mavrantzas VG; Kröger M J Chem Phys; 2010 Mar; 132(12):124904. PubMed ID: 20370147 [TBL] [Abstract][Full Text] [Related]
4. Reptation of a semiflexible polymer through porous media. Nam G; Johner A; Lee NK J Chem Phys; 2010 Jul; 133(4):044908. PubMed ID: 20687687 [TBL] [Abstract][Full Text] [Related]
5. Monte Carlo simulations of stress relaxation of entanglement-free Fraenkel chains. I. Linear polymer viscoelasticity. Lin YH; Das AK J Chem Phys; 2007 Feb; 126(7):074902. PubMed ID: 17328629 [TBL] [Abstract][Full Text] [Related]
6. Interdiffusion of solvent into glassy polymer films: a molecular dynamics study. Tsige M; Grest GS J Chem Phys; 2004 Oct; 121(15):7513-9. PubMed ID: 15473827 [TBL] [Abstract][Full Text] [Related]
7. The Rouse-Mooney model for coherent quasielastic neutron scatterings of single chains well entangled in polymer melts. Lin YH; Huang CF J Chem Phys; 2008 Jun; 128(22):224903. PubMed ID: 18554049 [TBL] [Abstract][Full Text] [Related]
8. Mobility in thin polymer films ranging from local segmental motion, Rouse modes to whole chain motion: a coupling model consideration. Ngai KL Eur Phys J E Soft Matter; 2002 May; 8(2):225-35. PubMed ID: 15010972 [TBL] [Abstract][Full Text] [Related]
9. Polymer chain dynamics at interfaces: role of boundary conditions at solid interface. Desai TG; Keblinski P; Kumar SK J Chem Phys; 2008 Jan; 128(4):044903. PubMed ID: 18247996 [TBL] [Abstract][Full Text] [Related]
10. Forced reptation revealed by chain pull-out simulations. Bulacu M; van der Giessen E J Chem Phys; 2009 Aug; 131(6):064904. PubMed ID: 19691408 [TBL] [Abstract][Full Text] [Related]
11. Dynamical properties of the slithering-snake algorithm: a numerical test of the activated-reptation hypothesis. Mattioni L; Wittmer JP; Baschnagel J; Barrat JL; Luijten E Eur Phys J E Soft Matter; 2003 Apr; 10(4):369-85. PubMed ID: 15015100 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of loop formation in polymer chains. Toan NM; Morrison G; Hyeon C; Thirumalai D J Phys Chem B; 2008 May; 112(19):6094-106. PubMed ID: 18269274 [TBL] [Abstract][Full Text] [Related]
13. Polymer chains in a soft nanotube: a Monte Carlo study. Avramova K; Milchev A J Chem Phys; 2006 Jan; 124(2):024909. PubMed ID: 16422650 [TBL] [Abstract][Full Text] [Related]
14. Universal properties of a single polymer chain in slit: Scaling versus molecular dynamics simulations. Dimitrov DI; Milchev A; Binder K; Klushin LI; Skvortsov AM J Chem Phys; 2008 Jun; 128(23):234902. PubMed ID: 18570523 [TBL] [Abstract][Full Text] [Related]
15. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
16. Simulation of polymer--polymer interdiffusion using the dynamic lattice liquid model. Polanowski P; Pakula T J Chem Phys; 2004 Apr; 120(13):6306-11. PubMed ID: 15267518 [TBL] [Abstract][Full Text] [Related]