These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 9680477)

  • 1. A helical coat protein recognition domain of the bacteriophage P22 scaffolding protein.
    Tuma R; Parker MH; Weigele P; Sampson L; Sun Y; Krishna NR; Casjens S; Thomas GJ; Prevelige PE
    J Mol Biol; 1998 Aug; 281(1):81-94. PubMed ID: 9680477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional domains of bacteriophage P22 scaffolding protein.
    Parker MH; Casjens S; Prevelige PE
    J Mol Biol; 1998 Aug; 281(1):69-79. PubMed ID: 9680476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural transitions in the scaffolding and coat proteins of P22 virus during assembly and disassembly.
    Tuma R; Prevelige PE; Thomas GJ
    Biochemistry; 1996 Apr; 35(14):4619-27. PubMed ID: 8605213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain study of bacteriophage p22 coat protein and characterization of the capsid lattice transformation by hydrogen/deuterium exchange.
    Kang S; Prevelige PE
    J Mol Biol; 2005 Apr; 347(5):935-48. PubMed ID: 15784254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic interactions drive scaffolding/coat protein binding and procapsid maturation in bacteriophage P22.
    Parker MH; Prevelige PE
    Virology; 1998 Oct; 250(2):337-49. PubMed ID: 9792844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular genetics of bacteriophage P22 scaffolding protein's functional domains.
    Weigele PR; Sampson L; Winn-Stapley D; Casjens SR
    J Mol Biol; 2005 May; 348(4):831-44. PubMed ID: 15843016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus.
    Sun Y; Parker MH; Weigele P; Casjens S; Prevelige PE; Krishna NR
    J Mol Biol; 2000 Apr; 297(5):1195-202. PubMed ID: 10764583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of virus assembly probed by Raman spectroscopy: the icosahedral bacteriophage P22.
    Tuma R; Thomas GJ
    Biophys Chem; 1997 Oct; 68(1-3):17-31. PubMed ID: 9468607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22.
    Rodríguez-Casado A; Thomas GJ
    Biochemistry; 2003 Apr; 42(12):3437-45. PubMed ID: 12653547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of subunit structural changes accompanying assembly of the bacteriophage P22 procapsid.
    Tuma R; Tsuruta H; Benevides JM; Prevelige PE; Thomas GJ
    Biochemistry; 2001 Jan; 40(3):665-74. PubMed ID: 11170383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacteriophage P22 scaffolding protein forms oligomers in solution.
    Parker MH; Stafford WF; Prevelige PE
    J Mol Biol; 1997 May; 268(3):655-65. PubMed ID: 9171289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein.
    Mateu MG
    J Mol Biol; 2002 Apr; 318(2):519-31. PubMed ID: 12051856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dissection of the folding mechanism of the alpha subunit of tryptophan synthase: an amino-terminal autonomous folding unit controls several rate-limiting steps in the folding of a single domain protein.
    Zitzewitz JA; Matthews CR
    Biochemistry; 1999 Aug; 38(31):10205-14. PubMed ID: 10433729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of scaffolding subunits within the P22 procapsid lattice.
    Greene B; King J
    Virology; 1994 Nov; 205(1):188-97. PubMed ID: 7975215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen exchange dynamics of the P22 virion determined by time-resolved Raman spectroscopy. Effects of chromosome packaging on the kinetics of nucleotide exchanges.
    Reilly KE; Thomas GJ
    J Mol Biol; 1994 Aug; 241(1):68-82. PubMed ID: 8051708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, expression, and characterization of a DNA binding domain of gpNu1, a phage lambda DNA packaging protein.
    Yang Q; de Beer T; Woods L; Meyer JD; Manning MC; Overduin M; Catalano CE
    Biochemistry; 1999 Jan; 38(1):465-77. PubMed ID: 9890930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of an interacting coat-external scaffolding protein domain required for both the initiation of phiX174 procapsid morphogenesis and the completion of DNA packaging.
    Uchiyama A; Fane BA
    J Virol; 2005 Jun; 79(11):6751-6. PubMed ID: 15890913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid.
    Tuma R; Tsuruta H; French KH; Prevelige PE
    J Mol Biol; 2008 Sep; 381(5):1395-406. PubMed ID: 18582476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmembrane domain mediated self-assembly of major coat protein subunits from Ff bacteriophage.
    Melnyk RA; Partridge AW; Deber CM
    J Mol Biol; 2002 Jan; 315(1):63-72. PubMed ID: 11771966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, purification, and preliminary characterization by circular dichroism and NMR of a carboxyl-terminal domain of the bacteriophage P22 scaffolding protein.
    Parker MH; Jablonsky M; Casjens S; Sampson L; Krishna NR; Prevelige PE
    Protein Sci; 1997 Jul; 6(7):1583-6. PubMed ID: 9232659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.