These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 9680961)
1. Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Murphy DJ; Ross JH Plant J; 1998 Jan; 13(1):1-16. PubMed ID: 9680961 [TBL] [Abstract][Full Text] [Related]
2. Characterization of anther-expressed genes encoding a major class of extracellular oleosin-like proteins in the pollen coat of Brassicaceae. Ross JH; Murphy DJ Plant J; 1996 May; 9(5):625-37. PubMed ID: 8653113 [TBL] [Abstract][Full Text] [Related]
3. Constituents of the tapetosomes and elaioplasts in Brassica campestris tapetum and their degradation and retention during microsporogenesis. Ting JT; Wu SS; Ratnayake C; Huang AH Plant J; 1998 Dec; 16(5):541-51. PubMed ID: 10036772 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a new class of oleosins suggests a male gametophyte-specific lipid storage pathway. Roberts MR; Hodge R; Ross JH; Sorensen A; Murphy DJ; Draper J; Scott R Plant J; 1993 May; 3(5):629-36. PubMed ID: 8374615 [TBL] [Abstract][Full Text] [Related]
5. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Hernández-Pinzón I; Ross JH; Barnes KA; Damant AP; Murphy DJ Planta; 1999 Jun; 208(4):588-98. PubMed ID: 10420651 [TBL] [Abstract][Full Text] [Related]
6. Modifying the pollen coat protein composition in Brassica. Foster E; Schneiderman D; Cloutier M; Gleddie S; Robert LS Plant J; 2002 Aug; 31(4):477-86. PubMed ID: 12182705 [TBL] [Abstract][Full Text] [Related]
7. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil-body formation in seeds. Sarmiento C; Ross JH; Herman E; Murphy DJ Plant J; 1997 Apr; 11(4):783-96. PubMed ID: 9161036 [TBL] [Abstract][Full Text] [Related]
8. Stable oil bodies sheltered by a unique oleosin in lily pollen. Jiang PL; Wang CS; Hsu CM; Jauh GY; Tzen JT Plant Cell Physiol; 2007 Jun; 48(6):812-21. PubMed ID: 17468126 [TBL] [Abstract][Full Text] [Related]
9. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism. Beaudoin F; Napier JA Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479 [TBL] [Abstract][Full Text] [Related]
10. Identification, subcellular localization, and developmental studies of oleosins in the anther of Brassica napus. Wang TW; Balsamo RA; Ratnayake C; Platt KA; Ting JT; Huang AH Plant J; 1997 Mar; 11(3):475-87. PubMed ID: 9107037 [TBL] [Abstract][Full Text] [Related]
11. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Yi B; Zeng F; Lei S; Chen Y; Yao X; Zhu Y; Wen J; Shen J; Ma C; Tu J; Fu T Plant J; 2010 Sep; 63(6):925-38. PubMed ID: 20598092 [TBL] [Abstract][Full Text] [Related]
12. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Dun X; Zhou Z; Xia S; Wen J; Yi B; Shen J; Ma C; Tu J; Fu T Plant J; 2011 Nov; 68(3):532-45. PubMed ID: 21756273 [TBL] [Abstract][Full Text] [Related]
13. The initial deficiency of protein processing and flavonoids biosynthesis were the main mechanisms for the male sterility induced by SX-1 in Brassica napus. Ning L; Lin Z; Gu J; Gan L; Li Y; Wang H; Miao L; Zhang L; Wang B; Li M BMC Genomics; 2018 Nov; 19(1):806. PubMed ID: 30404610 [TBL] [Abstract][Full Text] [Related]
14. Tapetal oleosins play an essential role in tapetosome formation and protein relocation to the pollen coat. Lévesque-Lemay M; Chabot D; Hubbard K; Chan JK; Miller S; Robert LS New Phytol; 2016 Jan; 209(2):691-704. PubMed ID: 26305561 [TBL] [Abstract][Full Text] [Related]
15. Intra- and extracellular lipid composition and associated gene expression patterns during pollen development in Brassica napus. Piffanelli P; Ross JH; Murphy DJ Plant J; 1997 Mar; 11(3):549-62. PubMed ID: 9107041 [TBL] [Abstract][Full Text] [Related]
16. Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Hsieh K; Huang AH Plant J; 2005 Sep; 43(6):889-99. PubMed ID: 16146527 [TBL] [Abstract][Full Text] [Related]
17. Cloning of PCP1, a member of a family of pollen coat protein (PCP) genes from Brassica oleracea encoding novel cysteine-rich proteins involved in pollen-stigma interactions. Stanchev BS; Doughty J; Scutt CP; Dickinson H; Croy RR Plant J; 1996 Aug; 10(2):303-13. PubMed ID: 8771786 [TBL] [Abstract][Full Text] [Related]
18. Characterization of oleosins in the pollen coat of Brassica oleracea. Ruiter RK; Van Eldik GJ; Van Herpen RM; Schrauwen JA; Wullems GJ Plant Cell; 1997 Sep; 9(9):1621-31. PubMed ID: 9338964 [TBL] [Abstract][Full Text] [Related]
19. Protein composition of oil bodies from mature Brassica napus seeds. Jolivet P; Boulard C; Bellamy A; Larré C; Barre M; Rogniaux H; d'Andréa S; Chardot T; Nesi N Proteomics; 2009 Jun; 9(12):3268-84. PubMed ID: 19562800 [TBL] [Abstract][Full Text] [Related]
20. A unique caleosin in oil bodies of lily pollen. Jiang PL; Jauh GY; Wang CS; Tzen JT Plant Cell Physiol; 2008 Sep; 49(9):1390-5. PubMed ID: 18632804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]