These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 9680978)

  • 1. Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl.
    Gendreau E; Höfte H; Grandjean O; Brown S; Traas J
    Plant J; 1998 Jan; 13(2):221-30. PubMed ID: 9680978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls.
    Robson PR; Smith H
    Plant Physiol; 1996 Jan; 110(1):211-6. PubMed ID: 11536725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photomorphogenic development of the Arabidopsis shy2-1D mutation and its interaction with phytochromes in darkness.
    Kim BC; Soh MS; Hong SH; Furuya M; Nam HG
    Plant J; 1998 Jul; 15(1):61-8. PubMed ID: 9744095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-germination seed-phytochrome signals control stem extension in dark-grown Arabidopsis seedlings.
    Alconada Magliano T; Casal JJ
    Photochem Photobiol Sci; 2004 Jun; 3(6):612-6. PubMed ID: 15170493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.
    Ahmad M; Cashmore AR
    Plant J; 1997 Mar; 11(3):421-7. PubMed ID: 9107032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Arabidopsis GH3 gene, encoding an auxin-conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl growth.
    Park JE; Seo PJ; Lee AK; Jung JH; Kim YS; Park CM
    Plant Cell Physiol; 2007 Aug; 48(8):1236-41. PubMed ID: 17602188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of light and ethylene in hypocotyl hook maintenance in Arabidopsis thaliana seedlings.
    Knee EM; Hangarter RP; Knee M
    Physiol Plant; 2000 Feb; 108(2):208-15. PubMed ID: 11543153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. eid1: a new Arabidopsis mutant hypersensitive in phytochrome A-dependent high-irradiance responses.
    Büche C; Poppe C; Schäfer E; Kretsch T
    Plant Cell; 2000 Apr; 12(4):547-58. PubMed ID: 10760243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LLM-Domain B-GATA Transcription Factors Promote Stomatal Development Downstream of Light Signaling Pathways in Arabidopsis thaliana Hypocotyls.
    Klermund C; Ranftl QL; Diener J; Bastakis E; Richter R; Schwechheimer C
    Plant Cell; 2016 Mar; 28(3):646-60. PubMed ID: 26917680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark- and light-grown Arabidopsis seedlings.
    Desnos T; Orbović V; Bellini C; Kronenberger J; Caboche M; Traas J; Höfte H
    Development; 1996 Feb; 122(2):683-93. PubMed ID: 8625819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis.
    Liu Z; Zhang Y; Liu R; Hao H; Wang Z; Bi Y
    J Plant Physiol; 2011 Oct; 168(15):1771-9. PubMed ID: 21684034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
    Jensen PJ; Hangarter RP; Estelle M
    Plant Physiol; 1998 Feb; 116(2):455-62. PubMed ID: 9489005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle.
    Wu G; Carville JS; Spalding EP
    Plant J; 2016 Jan; 85(2):209-18. PubMed ID: 26662023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and developmental control of nuclear accumulation of COP1, a repressor of photomorphogenesis in Arabidopsis.
    von Arnim AG; Osterlund MT; Kwok SF; Deng XW
    Plant Physiol; 1997 Jul; 114(3):779-88. PubMed ID: 9232869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MIDGET connects COP1-dependent development with endoreduplication in Arabidopsis thaliana.
    Schrader A; Welter B; Hulskamp M; Hoecker U; Uhrig JF
    Plant J; 2013 Jul; 75(1):67-79. PubMed ID: 23573936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The growth of tomato (Lycopersicon esculentum Mill.) hypocotyls in the light and in darkness differentially involves auxin.
    Kraepiel Y; Agnes C; Thiery L; Maldiney R; Miginiac E; Delarue M
    Plant Sci; 2001 Nov; 161(6):1067-74. PubMed ID: 12088031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2.
    Kim BC; Soh MC; Kang BJ; Furuya M; Nam HG
    Plant J; 1996 Apr; 9(4):441-56. PubMed ID: 8624510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation.
    Reed JW; Elumalai RP; Chory J
    Genetics; 1998 Mar; 148(3):1295-310. PubMed ID: 9539443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.