These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 9681475)
1. Metabolism of cysteine in astroglial cells: synthesis of hypotaurine and taurine. Brand A; Leibfritz D; Hamprecht B; Dringen R J Neurochem; 1998 Aug; 71(2):827-32. PubMed ID: 9681475 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. Dringen R; Verleysdonk S; Hamprecht B; Willker W; Leibfritz D; Brand A J Neurochem; 1998 Feb; 70(2):835-40. PubMed ID: 9453580 [TBL] [Abstract][Full Text] [Related]
3. Release of preloaded taurine and hypotaurine from astrocytes in primary culture: stimulation by calcium-free media. Holopainen I; Kontro P; Oja SS Neurochem Res; 1985 Jan; 10(1):123-31. PubMed ID: 3982587 [TBL] [Abstract][Full Text] [Related]
4. Production of hypotaurine from L-cysteinesulfinate by rat liver mitochondria. Ubuka T; Okada A; Nakamura H Amino Acids; 2008 Jun; 35(1):53-8. PubMed ID: 18219548 [TBL] [Abstract][Full Text] [Related]
5. Reaction of hypotaurine or taurine with superoxide produces the organic peroxysulfonic acid peroxytaurine. Grove RQ; Karpowicz SJ Free Radic Biol Med; 2017 Jul; 108():575-584. PubMed ID: 28438660 [TBL] [Abstract][Full Text] [Related]
6. Propargylglycine inhibits hypotaurine/taurine synthesis and elevates cystathionine and homocysteine concentrations in primary mouse hepatocytes. Jurkowska H; Stipanuk MH; Hirschberger LL; Roman HB Amino Acids; 2015 Jun; 47(6):1215-23. PubMed ID: 25772816 [TBL] [Abstract][Full Text] [Related]
7. Taurine biosynthesis by neurons and astrocytes. Vitvitsky V; Garg SK; Banerjee R J Biol Chem; 2011 Sep; 286(37):32002-10. PubMed ID: 21778230 [TBL] [Abstract][Full Text] [Related]
8. Determination of hypotaurine and taurine in blood plasma of rats after the administration of L-cysteine. Yuasa S; Akagi R; Ubuka T Acta Med Okayama; 1990 Feb; 44(1):47-50. PubMed ID: 2330845 [TBL] [Abstract][Full Text] [Related]
9. Glutathione restoration as indicator for cellular metabolism of astroglial cells. Dringen R; Hamprecht B Dev Neurosci; 1998; 20(4-5):401-7. PubMed ID: 9778578 [TBL] [Abstract][Full Text] [Related]
10. Hypotaurine and taurine in gamete and embryo environments: de novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Guérin P; Ménézo Y Zygote; 1995 Nov; 3(4):333-43. PubMed ID: 8730898 [TBL] [Abstract][Full Text] [Related]
11. Taurine synthesis and cysteine metabolism in cultured rat astrocytes: effects of hyperosmotic exposure. Beetsch JW; Olson JE Am J Physiol; 1998 Apr; 274(4):C866-74. PubMed ID: 9575782 [TBL] [Abstract][Full Text] [Related]
12. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Brand A; Richter-Landsberg C; Leibfritz D Dev Neurosci; 1993; 15(3-5):289-98. PubMed ID: 7805581 [TBL] [Abstract][Full Text] [Related]
13. Ammonia toxicity under hyponatremic conditions in astrocytes: de novo synthesis of amino acids for the osmoregulatory response. Zwingmann C; Leibfritz D Neurochem Int; 2005 Jul; 47(1-2):39-50. PubMed ID: 15908044 [TBL] [Abstract][Full Text] [Related]
14. High-performance liquid chromatographic determination of hypotaurine and taurine after conversion to 4-dimethylaminoazobenzene-4'-sulfonyl derivatives and its application to the urine of cysteine-administered rats. Futani S; Ubuka T; Abe T J Chromatogr B Biomed Appl; 1994 Oct; 660(1):164-9. PubMed ID: 7858709 [TBL] [Abstract][Full Text] [Related]
15. Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide. Nagasaki T; Hongo Y; Koito T; Nakamura-Kusakabe I; Shimamura S; Takaki Y; Yoshida T; Maruyama T; Inoue K Amino Acids; 2015 Mar; 47(3):571-8. PubMed ID: 25501502 [TBL] [Abstract][Full Text] [Related]
16. Taurine biosynthesis in frog retina: effects of light and dark adaptations. Nishimura C; Ida S; Kuriyama K J Neurosci Res; 1983; 9(1):59-67. PubMed ID: 6601194 [TBL] [Abstract][Full Text] [Related]
17. Interactions of triethyltin-chloride (TET) with the energy metabolism of cultured rat brain astrocytes: studies by multinuclear magnetic resonance spectroscopy. Brand A; Leibfritz D; Wolburg H; Richter-Landsberg C Neurochem Res; 1997 Feb; 22(2):123-31. PubMed ID: 9016837 [TBL] [Abstract][Full Text] [Related]
18. Increased excretion of taurine, hypotaurine and sulfate after hypotaurine loading and capacity of hypotaurine metabolism in rats. Fujiwara M; Ubuka T; Abe T; Yukihiro K; Tomozawa M Physiol Chem Phys Med NMR; 1995; 27(2):131-7. PubMed ID: 7568416 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of [U-(13)C]leucine in cultured astroglial cells. Bixel MG; Engelmann J; Willker W; Hamprecht B; Leibfritz D Neurochem Res; 2004 Nov; 29(11):2057-67. PubMed ID: 15662840 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of cysteine catabolism into taurine impacts glutathione homeostasis in rats challenged with ethanol. Ahn CW; Kwon DY; Jun DS; Lee YM; Kim YC Amino Acids; 2015 Jun; 47(6):1273-7. PubMed ID: 25833720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]