BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9681872)

  • 21. Protein engineering of the relative specificity of glucoamylase from Aspergillus awamori based on sequence similarities between starch-degrading enzymes.
    Sierks MR; Svensson B
    Protein Eng; 1994 Dec; 7(12):1479-84. PubMed ID: 7716159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations.
    Liu HL; Wang WC
    Protein Eng; 2003 Jan; 16(1):19-25. PubMed ID: 12646689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis.
    Frandsen TP; Stoffer BB; Palcic MM; Hof S; Svensson B
    J Mol Biol; 1996 Oct; 263(1):79-89. PubMed ID: 8890914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid.
    Fierobe HP; Mirgorodskaya E; McGuire KA; Roepstorff P; Svensson B; Clarke AJ
    Biochemistry; 1998 Mar; 37(11):3743-52. PubMed ID: 9521693
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cassette mutagenesis of Aspergillus awamori glucoamylase near its general acid residue to probe its catalytic and pH properties.
    Bakir U; Coutinho PM; Sullivan PA; Ford C; Reilly PJ
    Protein Eng; 1993 Nov; 6(8):939-46. PubMed ID: 8309943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-directed mutagenesis at the active site Trp120 of Aspergillus awamori glucoamylase.
    Sierks MR; Ford C; Reilly PJ; Svensson B
    Protein Eng; 1989 Aug; 2(8):621-5. PubMed ID: 2510150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving operating performance of glucoamylase by mutagenesis.
    Ford C
    Curr Opin Biotechnol; 1999 Aug; 10(4):353-7. PubMed ID: 10449316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of multiple forms of glucoamylase in Aspergillus awamori.
    Bhella RS; Altosaar I
    Biochem Cell Biol; 1987 Aug; 65(8):762-5. PubMed ID: 3124870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides.
    Sierks MR; Svensson B
    Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger.
    Olsen K; Svensson B; Christensen U
    Eur J Biochem; 1992 Oct; 209(2):777-84. PubMed ID: 1425682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation.
    Chen HM; Ford C; Reilly PJ
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):275-81. PubMed ID: 8037681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of biochemical properties of glucoamylases from the filamentous fungi Penicillium and Aspergillus.
    Volkov PV; Rozhkova AM; Semenova MV; Zorov IN; Sinitsyn AP
    Biochemistry (Mosc); 2013 Oct; 78(10):1180-9. PubMed ID: 24237153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermosensitive mutants of Aspergillus awamori glucoamylase by random mutagenesis: inactivation kinetics and structural interpretation.
    Flory N; Gorman M; Coutinho PM; Ford C; Reilly PJ
    Protein Eng; 1994 Aug; 7(8):1005-12. PubMed ID: 7809026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing.
    Kim MS; Park JT; Kim YW; Lee HS; Nyawira R; Shin HS; Park CS; Yoo SH; Kim YR; Moon TW; Park KH
    Appl Environ Microbiol; 2004 Jul; 70(7):3933-40. PubMed ID: 15240266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Properties of a purified thermostable glucoamylase from Aspergillus niveus.
    da Silva TM; Maller A; Damásio AR; Michelin M; Ward RJ; Hirata IY; Jorge JA; Terenzi HF; de Polizeli ML
    J Ind Microbiol Biotechnol; 2009 Dec; 36(12):1439-46. PubMed ID: 19697071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities.
    Natarajan SK; Sierks MR
    Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger.
    Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW
    Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of agricultural wastes of Aspergillus awamori for the production of glucoamylase.
    Attia RM; Ali SA
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(4):322-5. PubMed ID: 333823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of formation of maltose and isomaltose through condensation of glucose by glucoamylase.
    Adachi S; Ueda Y; Hashimoto K
    Biotechnol Bioeng; 1984 Feb; 26(2):121-7. PubMed ID: 18551697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of mutation of Asn694 in Aspergillus niger α-glucosidase on hydrolysis and transglucosylation.
    Ma M; Okuyama M; Sato M; Tagami T; Klahan P; Kumagai Y; Mori H; Kimura A
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6399-6408. PubMed ID: 28688044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.