These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 9682137)

  • 1. Optical rotation signals recorded from a single skeletal muscle fibre of a frog.
    Tsuboi T; Watanabe A
    J Muscle Res Cell Motil; 1998 Jun; 19(5):505-13. PubMed ID: 9682137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling.
    Jong DS; Stroffekova K; Heiny JA
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):787-808. PubMed ID: 9130173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From inward spread of activation, active elongation to the effect of organic calcium channel blockers in muscle excitation-contraction coupling.
    Gonzalez-Serratos ; Ortega A; Valle-Aguilera R; Chang R
    Adv Exp Med Biol; 2005; 565():249-64; discussion 264-5, 397-403. PubMed ID: 16106980
    [No Abstract]   [Full Text] [Related]  

  • 5. A large birefringence signal preceding contraction in single twitch fibres of the frog.
    Baylor SM; Oetliker H
    J Physiol; 1977 Jan; 264(1):141-62. PubMed ID: 300106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Picrotoxin potentiates contraction while inhibiting Ca current but increasing birefringence signal in frog skeletal muscle fibers.
    Jacquemond V; Oetliker H; Rougier O; Takeda K
    Jpn J Physiol; 1996 Feb; 46(1):99-104. PubMed ID: 8743724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of agonists and antagonists of rhyanodine receptors on potassium contractures in twitch and tonic frog skeletal muscle fibers].
    Katina IE; Nasledov GA
    Biofizika; 2006; 51(5):898-905. PubMed ID: 17131831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog.
    Kovács L; Schümperli RA; Szücs G
    J Physiol; 1983 Aug; 341():579-93. PubMed ID: 6604807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling?
    Zhou J; Launikonis BS; Ríos E; Brum G
    J Gen Physiol; 2004 Oct; 124(4):409-28. PubMed ID: 15452201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ca2+]i following extrasystoles in guinea-pig trabeculae microinjected with fluo-3 - a comparison with frog skeletal muscle fibres.
    Wohlfart B
    Acta Physiol Scand; 2000 May; 169(1):1-11. PubMed ID: 10759605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium release and sarcoplasmic reticulum membrane potential in frog skeletal muscle fibres.
    Baylor SM; Chandler WK; Marshall MW
    J Physiol; 1984 Mar; 348():209-38. PubMed ID: 6716284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of mouse skeletal muscle fibre type composition and contractile responses to calcium channel blocker.
    Mänttäri S; Järvilehto M
    BMC Physiol; 2005 Feb; 5(1):4. PubMed ID: 15710036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between the rise-time of single-fibre action potentials and radial distance in human muscle fibres.
    Rodríguez J; Navallas J; Gila L; Rodríguez I; Malanda A
    Clin Neurophysiol; 2010 Feb; 121(2):214-20. PubMed ID: 19955017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calciseptine, a Ca2+ channel blocker, has agonist actions on L-type Ca2+ currents of frog and mammalian skeletal muscle.
    García MC; Hernández-Gallegos Z; Escamilla J; Sánchez JA
    J Membr Biol; 2001 Nov; 184(2):121-9. PubMed ID: 11719849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac Purkinje fibers.
    Marban E; Wier WG
    Circ Res; 1985 Jan; 56(1):133-8. PubMed ID: 2578335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the calcium channel agonist Bay K8644 on mechanical and electrical responses of frog skeletal muscle.
    Oz M; Frank GB
    Can J Physiol Pharmacol; 1994 Oct; 72(10):1220-5. PubMed ID: 7533650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valinomycin and excitation-contraction coupling in skeletal muscle fibres of the frog.
    Pape PC; Konishi M; Baylor SM
    J Physiol; 1992 Apr; 449():219-35. PubMed ID: 1326044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of reducing agents and oxidants on excitation-contraction coupling in skeletal muscle fibres of rat and toad.
    Posterino GS; Lamb GD
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):809-25. PubMed ID: 8930846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of repetitive tetanic stimulation at long intervals on excitation-contraction coupling in frog skeletal muscle.
    Bruton JD; Lännergren J; Westerblad H
    J Physiol; 1996 Aug; 495 ( Pt 1)(Pt 1):15-22. PubMed ID: 8866348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating factors of calcium-free contraction at low [MgATP]: a physiological study on the steady states of skinned fibres of frog skeletal muscle.
    Yamaguchi M
    J Muscle Res Cell Motil; 1998 Nov; 19(8):949-60. PubMed ID: 10047994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.