These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 96822)

  • 1. Excitation energy transfer in Anacystis nidulans.
    Csatorday K; Hammans JW; Goedheer JC
    Biochem Biophys Res Commun; 1978 Mar; 81(2):571-5. PubMed ID: 96822
    [No Abstract]   [Full Text] [Related]  

  • 2. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.
    Brody SS; Treadwell C; Barber J
    Biophys J; 1981 Jun; 34(3):439-49. PubMed ID: 6788106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans: antagonistic effects of monovalent and divalent cations, and of high and low pH.
    Schreiber U
    FEBS Lett; 1979 Nov; 107(1):4-9. PubMed ID: 115721
    [No Abstract]   [Full Text] [Related]  

  • 4. Changes in phycocyanin-carotenoid association during nitrate starvation of Anacystis nidulans.
    Szalontai B; Csatorday K
    Biochem Biophys Res Commun; 1979 Jun; 88(4):1294-200. PubMed ID: 113004
    [No Abstract]   [Full Text] [Related]  

  • 5. Light-induced changes in the fluorescence yield of chlorophyll a in Anacystis nidulans. I. Relationship of slow fluorescence changes with structural changes.
    Mohanty P; Govindjee
    Biochim Biophys Acta; 1973 Apr; 305(1):95-104. PubMed ID: 4198185
    [No Abstract]   [Full Text] [Related]  

  • 6. Photoacoustic spectroscopy of Anacystis nidulans. III. Detection of photosynthetic activities.
    Carpentier R; Larue B; Leblanc RM
    Arch Biochem Biophys; 1984 Feb; 228(2):534-43. PubMed ID: 6421239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios.
    Ghosh AK; Govindjee
    Biophys J; 1966 Sep; 6(5):611-9. PubMed ID: 5970565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer among the chromophores in phycocyanins measured by picosecond kinetics.
    Kobayashi T; Degenkolb EO; Bersohn R; Rentzepis PM; MacColl R; Berns DS
    Biochemistry; 1979 Nov; 18(23):5073-8. PubMed ID: 115492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman spectra of phycocyanin, allophycocyanin and phycobilisomes from blue-green alga Anacystis nidulans.
    Szalontai B; Gombos Z; Csizmadia V
    Biochem Biophys Res Commun; 1985 Jul; 130(1):358-63. PubMed ID: 3927904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer kinetics in C-phycocyanin from cyanobacterium Westiellopsis prolifica studied by pump-probe techniques.
    Xia AD; Zhu JC; Jiang LJ; Li DL; Zhang XY
    Biochem Biophys Res Commun; 1991 Aug; 179(1):558-64. PubMed ID: 1909122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picosecond fluorescence of cryptomonad biliproteins. Effects of excitation intensity and the fluorescence decay times of phycocyanin 612, phycocyanin 645, and phycoerythrin 545.
    Guard-Friar D; MacColl R; Berns DS; Wittmershaus B; Knox RS
    Biophys J; 1985 Jun; 47(6):787-93. PubMed ID: 3926017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence from sensitizing phycobilin chromophores in the blue-green alga Anacystis nidulans.
    Csatorday K
    Biochim Biophys Acta; 1978 Nov; 504(2):341-3. PubMed ID: 102340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus.
    Demidov AA; Mimuro M
    Biophys J; 1995 Apr; 68(4):1500-6. PubMed ID: 7787035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lifetime of the excited state in vivo. I. Chlorophyll a in algae, at room and at liquid nitrogen temperatures; rate constants of radiationless deactivation and trapping.
    Mar T; Govindjee ; Singhal GS; Merkelo H
    Biophys J; 1972 Jul; 12(7):797-808. PubMed ID: 4624832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer in monomeric phycoerythrocyanin.
    Zehetmayer P; Kupka M; Scheer H; Zumbusch A
    Biochim Biophys Acta; 2004 Jan; 1608(1):35-44. PubMed ID: 14741583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phycobiliprotein synthesis in protoplasts of the unicellular cyanophyte, Anacystis nidulans.
    Cosner JC; Troxler RF
    Biochim Biophys Acta; 1978 Jul; 519(2):474-88. PubMed ID: 96857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria.
    Li Y; Wang B; Ai XC; Zhang XK; Zhao JQ; Jiang LJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1543-7. PubMed ID: 15147696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer from phycobiliproteins to photosystem I in vegetative cells and heterocysts of Anabaena variabilis.
    Peterson RB; Dolan E; Calvert HE; Ke B
    Biochim Biophys Acta; 1981 Feb; 634(2):237-48. PubMed ID: 6781539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting energy transfer from phycobilisomes to thylakoids in Anacystis nidulans.
    Harnischfeger G; Codd GA
    Biochim Biophys Acta; 1978 Jun; 502(3):507-13. PubMed ID: 418809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin.
    Squires AH; Moerner WE
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9779-9784. PubMed ID: 28847963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.