BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9682202)

  • 1. Improvements in prostate radiotherapy from the customization of beam directions.
    Rowbottom CG; Webb S; Oldham M
    Med Phys; 1998 Jul; 25(7 Pt 1):1171-9. PubMed ID: 9682202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optimisation of wedge filters in radiotherapy of the prostate.
    Oldham M; Neal AJ; Webb S
    Radiother Oncol; 1995 Dec; 37(3):209-20. PubMed ID: 8746589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A case study comparing the relative benefit of optimizing beam weights, wedge angles, beam orientations and tomotherapy in stereotactic radiotherapy of the brain.
    Oldham M; Khoo VS; Rowbottom CG; Bedford JL; Webb S
    Phys Med Biol; 1998 Aug; 43(8):2123-46. PubMed ID: 9725594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beam-orientation customization using an artificial neural network.
    Rowbottom CG; Webb S; Oldham M
    Phys Med Biol; 1999 Sep; 44(9):2251-62. PubMed ID: 10495119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.
    Jiang R; Barnett RB; Chow JC; Chen JZ
    Phys Med Biol; 2007 Mar; 52(5):1469-84. PubMed ID: 17301465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of conventional 'forward planning' with inverse planning for 3D conformal radiotherapy of the prostate.
    Oldham M; Neal A; Webb S
    Radiother Oncol; 1995 Jun; 35(3):248-62. PubMed ID: 7480829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours.
    Rowbottom CG; Oldham M; Webb S
    Phys Med Biol; 1999 Feb; 44(2):383-99. PubMed ID: 10070789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactively exploring optimized treatment plans.
    Rosen I; Liu HH; Childress N; Liao Z
    Int J Radiat Oncol Biol Phys; 2005 Feb; 61(2):570-82. PubMed ID: 15667980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria.
    Gordon JJ; Sayah N; Weiss E; Siebers JV
    Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benefit of using biologic parameters (EUD and NTCP) in IMRT optimization for treatment of intrahepatic tumors.
    Thomas E; Chapet O; Kessler ML; Lawrence TS; Ten Haken RK
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):571-8. PubMed ID: 15890602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The comparison of radiotherapy techniques for treatment of the prostate cancer: the three-field vs. the four-field.
    Milecki P; Piotrowski T; Dymnicka M
    Neoplasma; 2004; 51(1):64-9. PubMed ID: 15004663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of methods for beam angle optimization for IMRT using an accelerated exhaustive search strategy.
    Wang X; Zhang X; Dong L; Liu H; Wu Q; Mohan R
    Int J Radiat Oncol Biol Phys; 2004 Nov; 60(4):1325-37. PubMed ID: 15519806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coverage-based treatment planning to accommodate delineation uncertainties in prostate cancer treatment.
    Xu H; Gordon JJ; Siebers JV
    Med Phys; 2015 Sep; 42(9):5435-43. PubMed ID: 26328992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT.
    Rossi L; Breedveld S; Heijmen BJ; Voet PW; Lanconelli N; Aluwini S
    Phys Med Biol; 2012 Sep; 57(17):5441-58. PubMed ID: 22864234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Penalized likelihood fluence optimization with evolutionary components for intensity modulated radiation therapy treatment planning.
    Baydush AH; Marks LB; Das SK
    Med Phys; 2004 Aug; 31(8):2335-43. PubMed ID: 15377100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumetric modulated arc therapy: planning and evaluation for prostate cancer cases.
    Zhang P; Happersett L; Hunt M; Jackson A; Zelefsky M; Mageras G
    Int J Radiat Oncol Biol Phys; 2010 Apr; 76(5):1456-62. PubMed ID: 19540062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beam's-eye-view Dosimetrics-guided inverse planning for aperture-modulated arc therapy.
    Ma Y; Popple R; Suh TS; Xing L
    Int J Radiat Oncol Biol Phys; 2009 Dec; 75(5):1587-95. PubMed ID: 19733446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity-modulated radiation therapy for pancreatic and prostate cancer using pulsed low-dose rate delivery techniques.
    Li J; Lang J; Wang P; Kang S; Lin MH; Chen X; Chen F; Guo M; Chen L; Ma CM
    Med Dosim; 2014; 39(4):330-6. PubMed ID: 25087084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving intensity-modulated radiation therapy using the anatomic beam orientation optimization algorithm.
    Potrebko PS; McCurdy BM; Butler JB; El-Gubtan AS
    Med Phys; 2008 May; 35(5):2170-9. PubMed ID: 18561692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.