BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

669 related articles for article (PubMed ID: 9682210)

  • 1. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target.
    Yue G; Chen J; Song R
    Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy.
    Lee CL; Zhou XL; Kudchadker RJ; Harmon F; Harker YD
    Med Phys; 2000 Jan; 27(1):192-202. PubMed ID: 10659757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.
    Atanackovic J; Matysiak W; Witharana S; Dubeau J; Waker AJ
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):221-4. PubMed ID: 24298169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction.
    Zimin S; Allen BJ
    Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.
    Kobayashi T; Bengua G; Tanaka K; Nakagawa Y
    Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What is the best proton energy for accelerator-based BNCT using the 7Li(p,n)7Be reaction?
    Allen DA; Beynon TD
    Med Phys; 2000 May; 27(5):1113-8. PubMed ID: 10841417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-threshold (7)Li(p,n)(7)Be neutrons on the practical conditions using thick Li-target and Gaussian proton energies for BNCT.
    Kobayashi T; Hayashizaki N; Katabuchi T; Tanaka K; Bengua G; Nakao N; Kosako K
    Appl Radiat Isot; 2014 Jun; 88():221-4. PubMed ID: 24491682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near threshold ⁷Li(p,n) ⁷Be reaction as neutron source for BNCT.
    Minsky DM; Kreiner AJ
    Appl Radiat Isot; 2015 Dec; 106():68-71. PubMed ID: 26235187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Irradiation characteristics of BNCT using near-threshold 7Li(p, n)7Be direct neutrons: application to intra-operative BNCT for malignant brain tumours.
    Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Ishikawa M; Hoshi M
    Phys Med Biol; 2002 Aug; 47(16):3011-32. PubMed ID: 12222863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV.
    Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M
    Med Phys; 2006 Jun; 33(6):1688-94. PubMed ID: 16872076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical target system for accelerator-based BNCT which may effectively double the dose rate.
    Randers-Pehrson G; Brenner DJ
    Med Phys; 1998 Jun; 25(6):894-6. PubMed ID: 9650178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design.
    Lee PY; Liu YH; Jiang SH
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TPD-based evaluation of near threshold mono-energetic proton energies for the (7)Li(p,n)(7)Be production of neutrons for BNCT.
    Bengua G; Kobayashi T; Tanaka K; Nakagawa Y; Unesaki H
    Phys Med Biol; 2006 Aug; 51(16):4095-109. PubMed ID: 16885627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold.
    Zimin S; Allen BJ
    Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.