These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 9682311)
1. Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Shono Y; Kaneda K; Abumi K; McAfee PC; Cunningham BW Spine (Phila Pa 1976); 1998 Jul; 23(14):1550-8. PubMed ID: 9682311 [TBL] [Abstract][Full Text] [Related]
2. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253 [TBL] [Abstract][Full Text] [Related]
3. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Sep; 70(8):1182-91. PubMed ID: 3417703 [TBL] [Abstract][Full Text] [Related]
5. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Jun; 70(5):680-91. PubMed ID: 3392061 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical evaluation of methods of posterior stabilization of the spine and posterior lumbar interbody arthrodesis for lumbosacral isthmic spondylolisthesis. A calf-spine model. Shirado O; Zdeblick TA; McAfee PC; Warden KE J Bone Joint Surg Am; 1991 Apr; 73(4):518-26. PubMed ID: 2013591 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical evaluation of anterior thoracolumbar spinal instrumentation. An HS; Lim TH; You JW; Hong JH; Eck J; McGrady L Spine (Phila Pa 1976); 1995 Sep; 20(18):1979-83. PubMed ID: 8578371 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Cunningham BW; Gordon JD; Dmitriev AE; Hu N; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S110-7. PubMed ID: 14560182 [TBL] [Abstract][Full Text] [Related]
10. Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis. Brodke DS; Bachus KN; Mohr RA; Nguyen BK Spine J; 2001; 1(5):373-9. PubMed ID: 14588318 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws. An HS; Singh K; Vaccaro AR; Wang G; Yoshida H; Eck J; McGrady L; Lim TH Spine (Phila Pa 1976); 2004 Feb; 29(3):257-62. PubMed ID: 14752346 [TBL] [Abstract][Full Text] [Related]
12. Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum. Untch C; Liu Q; Hart R Spine (Phila Pa 1976); 2004 Nov; 29(21):2376-81. PubMed ID: 15507798 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model. Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage. Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903 [TBL] [Abstract][Full Text] [Related]
15. Types of spinal instability that require interbody support in posterior lumbar reconstruction: an in vitro biomechanical investigation. Oda I; Abumi K; Yu BS; Sudo H; Minami A Spine (Phila Pa 1976); 2003 Jul; 28(14):1573-80. PubMed ID: 12865847 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical comparison of lumbosacral fixation using Luque-Galveston and Colorado II sacropelvic fixation: advantage of using locked proximal fixation. Early S; Mahar A; Oka R; Newton P Spine (Phila Pa 1976); 2005 Jun; 30(12):1396-401. PubMed ID: 15959368 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Lim TH; An HS; Hong JH; Ahn JY; You JW; Eck J; McGrady LM Spine (Phila Pa 1976); 1997 Feb; 22(3):261-6. PubMed ID: 9051887 [TBL] [Abstract][Full Text] [Related]
18. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Slucky AV; Brodke DS; Bachus KN; Droge JA; Braun JT Spine J; 2006; 6(1):78-85. PubMed ID: 16413452 [TBL] [Abstract][Full Text] [Related]
19. [Adjacent segment degeneration after lumbosacral fusion in spondylolisthesis: a retrospective radiological and clinical analysis]. Zencica P; Chaloupka R; HladĂková J; Krbec M Acta Chir Orthop Traumatol Cech; 2010 Apr; 77(2):124-30. PubMed ID: 20447355 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB; Murovic JA; Cho BY; Lim TJ; Park J J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]