These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9682960)

  • 1. Protein-membrane interactions during hemodialysis: effects on solute transport.
    Morti SM; Zydney AL
    ASAIO J; 1998; 44(4):319-26. PubMed ID: 9682960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Plasma Proteins on the Transport and Surface Characteristics of Polysulfone/Polyethersulfone and Asymmetric Cellulose Triacetate High Flux Dialyzers.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Artif Organs; 2018 Nov; 42(11):1070-1077. PubMed ID: 29774568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis.
    Langsdorf LJ; Zydney AL
    J Biomed Mater Res; 1994 May; 28(5):573-82. PubMed ID: 7517941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of blood-membrane interactions on solute clearance during hemodialysis.
    Langsdorf LJ; Krankel LG; Zydney AL
    ASAIO J; 1993; 39(3):M767-72. PubMed ID: 7505640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of blood contact on the transport properties of hemodialysis membranes: a two-layer membrane model.
    Langsdorf LJ; Zydney AL
    Blood Purif; 1994; 12(6):292-307. PubMed ID: 7532418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport Characteristics of Asymmetric Cellulose Triacetate Hemodialysis Membranes.
    Kim TR; Hadidi M; Motevalian SP; Sunohara T; Zydney AL
    Blood Purif; 2018; 45(1-3):46-52. PubMed ID: 29161718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bleach reprocessing upon the clearance characteristics and surface charge of polysulfone hemodialyzers.
    Shao J; Zydney AL
    ASAIO J; 2004; 50(3):246-52. PubMed ID: 15171477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of three different hemodialysis membranes for plasma porphyrin removal.
    Fontanellas A; Herrero JA; Moran MJ; Coronel F; Sepulveda P; Barrientos A; Enriquez De Salamanca R
    Am J Kidney Dis; 1995 Jan; 25(1):30-3. PubMed ID: 7810529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two layer model for the effects of blood contact on membrane transport in artificial organs.
    Boyd RF; Langsdorf LJ; Zydney AL
    ASAIO J; 1994; 40(3):M864-9. PubMed ID: 8555636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro comparison of peracetic acid and bleach cleaning of polysulfone hemodialysis membranes.
    Shao J; Wolff S; Zydney AL
    Artif Organs; 2007 Jun; 31(6):452-60. PubMed ID: 17537057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a polyacrylonitrile membrane and a membrane made of regenerated cellulose on the plasma concentrations of erythropoietin during hemodialysis.
    Opatrný K; Krouzecký A; Wirth J; Vít L; Eiselt J
    Artif Organs; 1998 Oct; 22(10):816-20. PubMed ID: 9790077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of blood contact and reuse on the transport properties of high-flux dialysis membranes.
    Kunas GA; Burke RA; Brierton MA; Ofsthun NJ
    ASAIO J; 1996; 42(4):288-94. PubMed ID: 8828786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved preservation of residual renal function in chronic hemodialysis patients using polysulfone dialyzers.
    McCarthy JT; Jenson BM; Squillace DP; Williams AW
    Am J Kidney Dis; 1997 Apr; 29(4):576-83. PubMed ID: 9100048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of four different high-flux hemodialyzers under conventional conditions in vivo.
    Sombolos K; Tsitamidou Z; Kyriazis G; Karagianni A; Kantaropoulou M; Progia E
    Am J Nephrol; 1997; 17(5):406-12. PubMed ID: 9382156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of beta-2-microglobulin by diffusion alone is feasible using highly permeable dialysis membranes.
    Naitoh A; Tatsuguchi T; Okada M; Ohmura T; Sakai K
    ASAIO Trans; 1988; 34(3):630-4. PubMed ID: 3058183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of peracetic acid reprocessing on the transport characteristics of polysulfone hemodialyzers.
    Wolff SH; Zydney AL
    Artif Organs; 2005 Feb; 29(2):166-73. PubMed ID: 15670286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of dialyzers used in shortened dialysis.
    Petersen J; Ramsey KD; Kang MS; Yeh IT
    ASAIO Trans; 1989; 35(3):338-40. PubMed ID: 2688714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodialysis urea rebound and membrane biocompatibility: accuracy of Kt/V estimations.
    Navarro JF; del Castillo N; Fernández JL; Macía ML; Méndez ML; Chahin J; García-Nieto V; Gallego E; Mora-Fernández C; García J
    Artif Organs; 1997 Feb; 21(2):91-5. PubMed ID: 9028489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Case studies of clinical hemodialysis membranes: influences of membrane morphology and biocompatibility on uremic blood-membrane interactions and inflammatory biomarkers.
    Westphalen H; Saadati S; Eduok U; Abdelrasoul A; Shoker A; Choi P; Doan H; Ein-Mozaffari F
    Sci Rep; 2020 Sep; 10(1):14808. PubMed ID: 32908160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the basic principles determining the performance of several high-flux dialyzers.
    Jindal KK; McDougall J; Woods B; Nowakowski L; Goldstein MB
    Am J Kidney Dis; 1989 Dec; 14(6):507-11. PubMed ID: 2688406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.