These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 9683192)
21. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Nash HM; Bruner SD; Schärer OD; Kawate T; Addona TA; Spooner E; Lane WS; Verdine GL Curr Biol; 1996 Aug; 6(8):968-80. PubMed ID: 8805338 [TBL] [Abstract][Full Text] [Related]
22. Inactivation of OGG1 increases the incidence of G . C-->T . A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Thomas D; Scot AD; Barbey R; Padula M; Boiteux S Mol Gen Genet; 1997 Mar; 254(2):171-8. PubMed ID: 9108279 [TBL] [Abstract][Full Text] [Related]
23. Characterization of an 8-oxoguanine DNA glycosylase from Methanococcus jannaschii. Gogos A; Clarke ND J Biol Chem; 1999 Oct; 274(43):30447-50. PubMed ID: 10521423 [TBL] [Abstract][Full Text] [Related]
24. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. Harrison L; Hatahet Z; Wallace SS J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822 [TBL] [Abstract][Full Text] [Related]
25. Substrate specificity of the Ogg1 protein of Saccharomyces cerevisiae: excision of guanine lesions produced in DNA by ionizing radiation- or hydrogen peroxide/metal ion-generated free radicals. Karahalil B; Girard PM; Boiteux S; Dizdaroglu M Nucleic Acids Res; 1998 Mar; 26(5):1228-33. PubMed ID: 9469830 [TBL] [Abstract][Full Text] [Related]
26. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Radicella JP; Dherin C; Desmaze C; Fox MS; Boiteux S Proc Natl Acad Sci U S A; 1997 Jul; 94(15):8010-5. PubMed ID: 9223305 [TBL] [Abstract][Full Text] [Related]
27. Escherichia coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA. Matsumoto Y; Zhang QM; Takao M; Yasui A; Yonei S Nucleic Acids Res; 2001 May; 29(9):1975-81. PubMed ID: 11328882 [TBL] [Abstract][Full Text] [Related]
28. Rat 7,8-dihydro-8-oxoguanine DNA glycosylase: substrate specificity, kinetics and cleavagemechanism at an apurinic site. Prieto Alamo MJ; Jurado J; Francastel E; Laval F Nucleic Acids Res; 1998 Nov; 26(22):5199-202. PubMed ID: 9801319 [TBL] [Abstract][Full Text] [Related]
29. Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins. Pascucci B; Maga G; Hübscher U; Bjoras M; Seeberg E; Hickson ID; Villani G; Giordano C; Cellai L; Dogliotti E Nucleic Acids Res; 2002 May; 30(10):2124-30. PubMed ID: 12000832 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Vidal AE; Hickson ID; Boiteux S; Radicella JP Nucleic Acids Res; 2001 Mar; 29(6):1285-92. PubMed ID: 11238994 [TBL] [Abstract][Full Text] [Related]
31. Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosylases repair 1,N6-ethenoadenine when present in DNA. Saparbaev M; Kleibl K; Laval J Nucleic Acids Res; 1995 Sep; 23(18):3750-5. PubMed ID: 7479006 [TBL] [Abstract][Full Text] [Related]
32. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Leipold MD; Workman H; Muller JG; Burrows CJ; David SS Biochemistry; 2003 Sep; 42(38):11373-81. PubMed ID: 14503888 [TBL] [Abstract][Full Text] [Related]
33. Role of lysine-57 in the catalytic activities of Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg protein). Sidorkina OM; Laval J Nucleic Acids Res; 1998 Dec; 26(23):5351-7. PubMed ID: 9826758 [TBL] [Abstract][Full Text] [Related]
34. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Boiteux S; Coste F; Castaing B Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453 [TBL] [Abstract][Full Text] [Related]
35. Excision of 8-methylguanine site-specifically incorporated into oligonucleotide substrates by the AlkA protein of Escherichia coli. Gasparutto D; Dhérin C; Boiteux S; Cadet J DNA Repair (Amst); 2002 Jun; 1(6):437-47. PubMed ID: 12509232 [TBL] [Abstract][Full Text] [Related]
36. Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. O'Connor TR; Laval J Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5222-6. PubMed ID: 2664776 [TBL] [Abstract][Full Text] [Related]
37. Enzymatic properties of Escherichia coli and human 7,8-dihydro-8-oxoguanine DNA glycosylases. Asagoshi K; Yamada T; Terato H; Ohyama Y; Ide H Nucleic Acids Symp Ser; 2000; (44):11-2. PubMed ID: 12903244 [TBL] [Abstract][Full Text] [Related]
38. Specificity of stimulation of human 8-oxoguanine-DNA glycosylase by AP endonuclease. Sidorenko VS; Nevinsky GA; Zharkov DO Biochem Biophys Res Commun; 2008 Mar; 368(1):175-9. PubMed ID: 18222119 [TBL] [Abstract][Full Text] [Related]
39. Repair of DNA containing Fapy.dG and its beta-C-nucleoside analogue by formamidopyrimidine DNA glycosylase and MutY. Wiederholt CJ; Delaney MO; Pope MA; David SS; Greenberg MM Biochemistry; 2003 Aug; 42(32):9755-60. PubMed ID: 12911318 [TBL] [Abstract][Full Text] [Related]
40. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Bruner SD; Nash HM; Lane WS; Verdine GL Curr Biol; 1998 Mar; 8(7):393-403. PubMed ID: 9545197 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]