These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 9683671)
1. Transcriptional regulation of the KlDLD gene, encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase in Kluyveromyces lactis: effect of Klhap2 and fog mutations. Lodi T; Goffrini P; Bolondi I; Ferrero I Curr Genet; 1998 Jul; 34(1):12-20. PubMed ID: 9683671 [TBL] [Abstract][Full Text] [Related]
2. Carbon catabolite repression in Kluyveromyces lactis: isolation and characterization of the KIDLD gene encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Lodi T; O'Connor D; Goffrini P; Ferrero I Mol Gen Genet; 1994 Sep; 244(6):622-9. PubMed ID: 7969031 [TBL] [Abstract][Full Text] [Related]
3. A Klaac null mutant of Kluyveromyces lactis is complemented by a single copy of the Saccharomyces cerevisiae AAC1 gene. Viola AM; Lodi T; Ferrero I Curr Genet; 1999 Aug; 36(1-2):29-36. PubMed ID: 10447592 [TBL] [Abstract][Full Text] [Related]
4. Regulation of the Saccharomyces cerevisiae DLD1 gene encoding the mitochondrial protein D-lactate ferricytochrome c oxidoreductase by HAP1 and HAP2/3/4/5. Lodi T; Alberti A; Guiard B; Ferrero I Mol Gen Genet; 1999 Dec; 262(4-5):623-32. PubMed ID: 10628845 [TBL] [Abstract][Full Text] [Related]
5. Cloning and characterization of the lactate-specific inducible gene KlCYB2, encoding the cytochrome b(2) of Kluyveromyces lactis. Alberti A; Goffrini P; Ferrero I; Lodi T Yeast; 2000 May; 16(7):657-65. PubMed ID: 10806428 [TBL] [Abstract][Full Text] [Related]
6. Distinct transcriptional regulation of a gene coding for a mitochondrial protein in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis despite similar promoter structures. Mulder W; Scholten IH; Grivell LA Mol Microbiol; 1995 Sep; 17(5):813-24. PubMed ID: 8596431 [TBL] [Abstract][Full Text] [Related]
7. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae. Goffrini P; Ficarelli A; Donnini C; Lodi T; Puglisi PP; Ferrero I Curr Genet; 1996 Mar; 29(4):316-26. PubMed ID: 8598052 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the CYB2 gene expression: transcriptional co-ordination by the Hap1p, Hap2/3/4/5p and Adr1p transcription factors. Ramil E; Agrimonti C; Shechter E; Gervais M; Guiard B Mol Microbiol; 2000 Sep; 37(5):1116-32. PubMed ID: 10972830 [TBL] [Abstract][Full Text] [Related]
9. Expression of the AAC2 gene encoding the major mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is controlled at the transcriptional level by oxygen, heme and HAP2 factor. Betina S; Gavurníková G; Haviernik P; Sabová L; Kolarov J Eur J Biochem; 1995 May; 229(3):651-7. PubMed ID: 7758459 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the expression of the Kluyveromyces lactis PDC1 gene: carbon source-responsive elements and autoregulation. Destruelle M; Menghini R; Frontali L; Bianchi MM Yeast; 1999 Mar; 15(5):361-70. PubMed ID: 10219994 [TBL] [Abstract][Full Text] [Related]
11. A stress response related to the carbon source and the absence of KlHAP2 in Kluyveromyces lactis. Lamas-Maceiras M; Rodríguez-Torres AM; Freire-Picos MA J Ind Microbiol Biotechnol; 2011 Jan; 38(1):43-9. PubMed ID: 20820865 [TBL] [Abstract][Full Text] [Related]
12. The respiratory system of Kluyveromyces lactis escapes from HAP2 control. Nguyen C; Bolotin-Fukuhara M; Wésolowski-Louvel M; Fukuhara H Gene; 1995 Jan; 152(1):113-5. PubMed ID: 7828916 [TBL] [Abstract][Full Text] [Related]
13. Glucose repression of lactose/galactose metabolism in Kluyveromyces lactis is determined by the concentration of the transcriptional activator LAC9 (K1GAL4) [corrected]. Zachariae W; Kuger P; Breunig KD Nucleic Acids Res; 1993 Jan; 21(1):69-77. PubMed ID: 8441621 [TBL] [Abstract][Full Text] [Related]
14. Identification of upstream activator sequences that regulate induction of the beta-galactosidase gene in Kluyveromyces lactis. Leonardo JM; Bhairi SM; Dickson RC Mol Cell Biol; 1987 Dec; 7(12):4369-76. PubMed ID: 3125422 [TBL] [Abstract][Full Text] [Related]
15. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis. Georis I; Krijger JJ; Breunig KD; Vandenhaute J Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849 [TBL] [Abstract][Full Text] [Related]
16. The signal for glucose repression of the lactose-galactose regulon is amplified through subtle modulation of transcription of the Kluyveromyces lactis Kl-GAL4 activator gene. Kuzhandaivelu N; Jones WK; Martin AK; Dickson RC Mol Cell Biol; 1992 May; 12(5):1924-31. PubMed ID: 1569929 [TBL] [Abstract][Full Text] [Related]
17. Three target genes for the transcriptional activator Cat8p of Kluyveromyces lactis: acetyl coenzyme A synthetase genes KlACS1 and KlACS2 and lactate permease gene KlJEN1. Lodi T; Saliola M; Donnini C; Goffrini P J Bacteriol; 2001 Sep; 183(18):5257-61. PubMed ID: 11514507 [TBL] [Abstract][Full Text] [Related]
18. Complex transcriptional regulation of the Saccharomyces cerevisiae CYB2 gene encoding cytochrome b2: CYP1(HAP1) activator binds to the CYB2 upstream activation site UAS1-B2. Lodi T; Guiard B Mol Cell Biol; 1991 Jul; 11(7):3762-72. PubMed ID: 2046677 [TBL] [Abstract][Full Text] [Related]
19. The nuclear genes encoding the internal (KlNDI1) and external (KlNDE1) alternative NAD(P)H:ubiquinone oxidoreductases of mitochondria from Kluyveromyces lactis. Tarrío N; Díaz Prado S; Cerdán ME; González Siso MI Biochim Biophys Acta; 2005; 1707(2-3):199-210. PubMed ID: 15863098 [TBL] [Abstract][Full Text] [Related]
20. Functional characterisation and transcriptional regulation of the KlHEM12 gene from Kluyveromyces lactis. Núñez L; González-Siso I; Becerra M; Cerdán ME Curr Genet; 2004 Sep; 46(3):147-57. PubMed ID: 15257413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]