BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9684854)

  • 1. Analysis of the putative role of 24-carbon polyunsaturated fatty acids in the biosynthesis of docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids.
    Infante JP; Huszagh VA
    FEBS Lett; 1998 Jul; 431(1):1-6. PubMed ID: 9684854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders.
    Infante JP; Huszagh VA
    Mol Cell Biochem; 1997 Mar; 168(1-2):101-15. PubMed ID: 9062899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Straight-chain acyl-CoA oxidase knockout mouse accumulates extremely long chain fatty acids from alpha-linolenic acid: evidence for runaway carousel-type enzyme kinetics in peroxisomal beta-oxidation diseases.
    Infante JP; Tschanz CL; Shaw N; Michaud AL; Lawrence P; Brenna JT
    Mol Genet Metab; 2002 Feb; 75(2):108-19. PubMed ID: 11855929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells.
    Park HG; Park WJ; Kothapalli KS; Brenna JT
    FASEB J; 2015 Sep; 29(9):3911-9. PubMed ID: 26065859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pathway from arachidonic to docosapentaenoic acid (20:4n-6 to 22:5n-6) and from eicosapentaenoic to docosahexaenoic acid (20:5n-3 to 22:6n-3) studied in testicular cells from immature rats.
    Retterstøl K; Haugen TB; Christophersen BO
    Biochim Biophys Acta; 2000 Jan; 1483(1):119-31. PubMed ID: 10601701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid.
    Moore SA; Hurt E; Yoder E; Sprecher H; Spector AA
    J Lipid Res; 1995 Nov; 36(11):2433-43. PubMed ID: 8656081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zellweger syndrome knockout mouse models challenge putative peroxisomal beta-oxidation involvement in docosahexaenoic acid (22:6n-3) biosynthesis.
    Infante JP; Huszagh VA
    Mol Genet Metab; 2001 Jan; 72(1):1-7. PubMed ID: 11161822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning of polyunsaturated fatty acid oxidation between mitochondria and peroxisomes in isolated rat hepatocytes studied by HPLC separation of oxidation products.
    Tran TN; Christophersen BO
    Biochim Biophys Acta; 2002 Jul; 1583(2):195-204. PubMed ID: 12117563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the biosynthesis of 22:5n-6 and 22:6n-3: a complex intracellular process.
    Sprecher H; Chen Q; Yin FQ
    Lipids; 1999; 34 Suppl():S153-6. PubMed ID: 10419131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docosapentaenoic acid is converted to docosahexaenoic acid in the retinas of normal and prcd-affected miniature poodle dogs.
    Alvarez RA; Aguirre GD; Acland GM; Anderson RE
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):402-8. PubMed ID: 8112987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of docosahexaenoic acid in trout hepatocytes proceeds via 24-carbon intermediates.
    Buzzi M; Henderson RJ; Sargent JR
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Feb; 116(2):263-7. PubMed ID: 9159889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docosahexaenoic acid and n-6 docosapentaenoic acid supplementation alter rat skeletal muscle fatty acid composition.
    Stark KD; Lim SY; Salem N
    Lipids Health Dis; 2007 Apr; 6():13. PubMed ID: 17459159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.
    van Roermund CW; Hettema EH; Kal AJ; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1998 Feb; 17(3):677-87. PubMed ID: 9450993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid.
    Innis SM; Dyer RA
    J Lipid Res; 2002 Sep; 43(9):1529-36. PubMed ID: 12235185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxisomal beta-oxidation of polyunsaturated long chain fatty acids in human fibroblasts. The polyunsaturated and the saturated long chain fatty acids are retroconverted by the same acyl-CoA oxidase.
    Christensen E; Woldseth B; Hagve TA; Poll-The BT; Wanders RJ; Sprecher H; Stokke O; Christophersen BO
    Scand J Clin Lab Invest Suppl; 1993; 215():61-74. PubMed ID: 8327852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic fate of docosahexaenoic acid (DHA; 22:6n-3) in human cells: direct retroconversion of DHA to eicosapentaenoic acid (20:5n-3) dominates over elongation to tetracosahexaenoic acid (24:6n-3).
    Park HG; Lawrence P; Engel MG; Kothapalli K; Brenna JT
    FEBS Lett; 2016 Sep; 590(18):3188-94. PubMed ID: 27543786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells.
    Delton-Vandenbroucke I; Grammas P; Anderson RE
    J Lipid Res; 1997 Jan; 38(1):147-59. PubMed ID: 9034209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of saturated and polyunsaturated very-long-chain fatty acids in fibroblasts from patients with defects in peroxisomal beta-oxidation.
    Street JM; Singh H; Poulos A
    Biochem J; 1990 Aug; 269(3):671-7. PubMed ID: 2117919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of docosahexaenoic (22:6n-3), tetracosapentaenoic (24:5n-3) and tetracosahexaenoic (24:6n-3) acids on the desaturation and elongation of n-3 polyunsaturated fatty acids in trout liver microsomes.
    Henderson RJ; Burkow IC; Buzzi M; Bayer A
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):309-19. PubMed ID: 9630696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retroconversion and metabolism of [13C]22:6n-3 in humans and rats after intake of a single dose of [13C]22:6n-3-triacylglycerols.
    Brossard N; Croset M; Pachiaudi C; Riou JP; Tayot JL; Lagarde M
    Am J Clin Nutr; 1996 Oct; 64(4):577-86. PubMed ID: 8839503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.