BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9684865)

  • 1. Glycolytic pathway intermediates activate cardiac ryanodine receptors.
    Kermode H; Chan WM; Williams AJ; Sitsapesan R
    FEBS Lett; 1998 Jul; 431(1):59-62. PubMed ID: 9684865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by analogues of sulmazole.
    McGarry SJ; Williams AJ
    Br J Pharmacol; 1994 Apr; 111(4):1212-20. PubMed ID: 8032608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism.
    Lokuta AJ; Rogers TB; Lederer WJ; Valdivia HH
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):609-22. PubMed ID: 8544125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
    Treves S; Scutari E; Robert M; Groh S; Ottolia M; Prestipino G; Ronjat M; Zorzato F
    Biochemistry; 1997 Sep; 36(38):11496-503. PubMed ID: 9298970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle.
    O'Brien J; Valdivia HH; Block BA
    Biophys J; 1995 Feb; 68(2):471-82. PubMed ID: 7696500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excess noise in modified conductance states following the interaction of ryanoids with cardiac ryanodine receptor channels.
    Tanna B; Welch W; Ruest L; Sutko JL; Williams AJ
    FEBS Lett; 2002 Apr; 516(1-3):35-9. PubMed ID: 11959098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release in cat ventricular myocytes.
    Zima AV; Kockskämper J; Blatter LA
    J Physiol; 2006 Nov; 577(Pt 1):281-93. PubMed ID: 16945967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ryanoid modification of the cardiac muscle ryanodine receptor channel results in relocation of the tetraethylammonium binding site.
    Tanna B; Welch W; Ruest L; Sutko JL; Williams AJ
    J Gen Physiol; 2001 May; 117(5):385-94. PubMed ID: 11331348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes.
    Kockskämper J; Zima AV; Blatter LA
    J Physiol; 2005 May; 564(Pt 3):697-714. PubMed ID: 15695247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of R56865 on cardiac sarcoplasmic reticulum function and its role as an antagonist of digoxin at the sarcoplasmic reticulum calcium release channel.
    McGarry SJ; Scheufler E; Williams AJ
    Br J Pharmacol; 1995 Jan; 114(1):231-7. PubMed ID: 7712023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclic ADP-ribose does not affect cardiac or skeletal muscle ryanodine receptors.
    Fruen BR; Mickelson JR; Shomer NH; Velez P; Louis CF
    FEBS Lett; 1994 Sep; 352(2):123-6. PubMed ID: 7925959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron(II) is a modulator of ryanodine-sensitive calcium channels of cardiac muscle sarcoplasmic reticulum.
    Kim E; Giri SN; Pessah IN
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):57-66. PubMed ID: 7530865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K201 (JTV519) is a Ca2+-Dependent Blocker of SERCA and a Partial Agonist of Ryanodine Receptors in Striated Muscle.
    Darcy YL; Diaz-Sylvester PL; Copello JA
    Mol Pharmacol; 2016 Aug; 90(2):106-15. PubMed ID: 27235390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the Ca2+-release activity and ryanodine receptor in sarcoplasmic-reticulum membranes during cardiac myogenesis.
    Michalak M
    Biochem J; 1988 Aug; 253(3):631-6. PubMed ID: 2460083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of eicosapentaenoic acid on cardiac SR Ca(2+)-release and ryanodine receptor function.
    Swan JS; Dibb K; Negretti N; O'Neill SC; Sitsapesan R
    Cardiovasc Res; 2003 Nov; 60(2):337-46. PubMed ID: 14613863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels.
    Wong PW; Pessah IN
    Mol Pharmacol; 1996 Apr; 49(4):740-51. PubMed ID: 8609904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markovian models of low and high activity levels of cardiac ryanodine receptors.
    Saftenku E; Williams AJ; Sitsapesan R
    Biophys J; 2001 Jun; 80(6):2727-41. PubMed ID: 11371448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conducting and voltage-dependent behaviors of the native and purified SR Ca2+-release channels from the canine diaphragm.
    Picher M; Decrouy A; Proteau S; Rousseau E
    Biochim Biophys Acta; 1997 Sep; 1328(2):243-60. PubMed ID: 9315621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.