These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9684868)

  • 1. Skeletal muscle contractions stimulate cGMP formation and attenuate vascular smooth muscle myosin phosphorylation via nitric oxide.
    Lau KS; Grange RW; Chang WJ; Kamm KE; Sarelius I; Stull JT
    FEBS Lett; 1998 Jul; 431(1):71-4. PubMed ID: 9684868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide contributes to vascular smooth muscle relaxation in contracting fast-twitch muscles.
    Grange RW; Isotani E; Lau KS; Kamm KE; Huang PL; Stull JT
    Physiol Genomics; 2001 Feb; 5(1):35-44. PubMed ID: 11161004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. nNOS and eNOS modulate cGMP formation and vascular response in contracting fast-twitch skeletal muscle.
    Lau KS; Grange RW; Isotani E; Sarelius IH; Kamm KE; Huang PL; Stull JT
    Physiol Genomics; 2000 Jan; 2(1):21-7. PubMed ID: 11015578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.
    Merry TL; Lynch GS; McConell GK
    Am J Physiol Regul Integr Comp Physiol; 2010 Dec; 299(6):R1656-65. PubMed ID: 20943856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cGMP-mediated phosphorylation of heat shock protein 20 may cause smooth muscle relaxation without myosin light chain dephosphorylation in swine carotid artery.
    Rembold CM; Foster DB; Strauss JD; Wingard CJ; Eyk JE
    J Physiol; 2000 May; 524 Pt 3(Pt 3):865-78. PubMed ID: 10790164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selected contribution: insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle.
    Sandu OA; Ito M; Begum N
    J Appl Physiol (1985); 2001 Sep; 91(3):1475-82. PubMed ID: 11509551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation.
    Isenberg JS; Hyodo F; Matsumoto K; Romeo MJ; Abu-Asab M; Tsokos M; Kuppusamy P; Wink DA; Krishna MC; Roberts DD
    Blood; 2007 Mar; 109(5):1945-52. PubMed ID: 17082319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of nitric oxide on the maximal velocity of shortening of a mouse skeletal muscle.
    Maréchal G; Beckers-Bleukx G
    Pflugers Arch; 1998 Nov; 436(6):906-13. PubMed ID: 9799406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of nitric oxide synthase in skeletal muscle: a novel role for nitric oxide as a modulator of insulin action.
    Kapur S; Bédard S; Marcotte B; Côté CH; Marette A
    Diabetes; 1997 Nov; 46(11):1691-700. PubMed ID: 9356014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of contractile activity in vascular smooth muscle by protein kinases.
    Silver PJ
    Rev Clin Basic Pharm; 1985; 5(3-4):341-95. PubMed ID: 3029813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide.
    Nalli AD; Bhattacharya S; Wang H; Kendig DM; Grider JR; Murthy KS
    Am J Physiol Gastrointest Liver Physiol; 2017 Oct; 313(4):G330-G341. PubMed ID: 28705807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose uptake during contraction in isolated skeletal muscles from neuronal nitric oxide synthase μ knockout mice.
    Hong YH; Frugier T; Zhang X; Murphy RM; Lynch GS; Betik AC; Rattigan S; McConell GK
    J Appl Physiol (1985); 2015 May; 118(9):1113-21. PubMed ID: 25749441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different responsiveness to nitric oxide-cyclic guanosine monophosphate pathway in cholinergic and tachykinergic contractions of the rabbit iris sphincter muscle.
    Chuman H; Chuman T; Nao-i N; Sawada A; Yamamoto R; Kobayashi H; Wada A
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1719-25. PubMed ID: 9286260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photorelaxation is not attenuated by inhibition of the nitric oxide-cGMP pathway.
    Goud C; Watts SW; Webb RC
    J Vasc Res; 1996; 33(4):299-307. PubMed ID: 8695754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid versus slow ascending vasodilatation: intercellular conduction versus flow-mediated signalling with tetanic versus rhythmic muscle contractions.
    Sinkler SY; Segal SS
    J Physiol; 2017 Dec; 595(23):7149-7165. PubMed ID: 28981145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived nitric oxide inhibits the relaxation of the porcine coronary artery to natriuretic peptides by desensitizing big conductance calcium-activated potassium channels of vascular smooth muscle.
    Liang CF; Au AL; Leung SW; Ng KF; Félétou M; Kwan YW; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2010 Jul; 334(1):223-31. PubMed ID: 20332186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cGMP on [Ca2+]i, myosin light chain phosphorylation, and contraction in human myometrium.
    Word RA; Casey ML; Kamm KE; Stull JT
    Am J Physiol; 1991 Apr; 260(4 Pt 1):C861-7. PubMed ID: 1850199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arteriolar diameter and spontaneous vasomotion: importance of potassium channels and nitric oxide.
    de Souza Md; Bouskela E
    Microvasc Res; 2013 Nov; 90():121-7. PubMed ID: 23948594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R; Houston ME
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1315-21. PubMed ID: 9047041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttetanic potentiation in mdx muscle.
    Smith IC; Huang J; Quadrilatero J; Tupling AR; Vandenboom R
    J Muscle Res Cell Motil; 2010 Dec; 31(4):267-77. PubMed ID: 20972612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.