BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 9684891)

  • 1. A biomimetic strategy in the synthesis and fragmentation of cyclic protein.
    Tam JP; Lu YA
    Protein Sci; 1998 Jul; 7(7):1583-92. PubMed ID: 9684891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the disulfide linkage pattern in circulin A and B, HIV-inhibitory macrocyclic peptides.
    Derua R; Gustafson KR; Pannell LK
    Biochem Biophys Res Commun; 1996 Nov; 228(2):632-8. PubMed ID: 8920961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fmoc-based synthesis of disulfide-rich cyclic peptides.
    Cheneval O; Schroeder CI; Durek T; Walsh P; Huang YH; Liras S; Price DA; Craik DJ
    J Org Chem; 2014 Jun; 79(12):5538-44. PubMed ID: 24918986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif.
    Göransson U; Craik DJ
    J Biol Chem; 2003 Nov; 278(48):48188-96. PubMed ID: 12960160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity.
    Daly NL; Koltay A; Gustafson KR; Boyd MR; Casas-Finet JR; Craik DJ
    J Mol Biol; 1999 Jan; 285(1):333-45. PubMed ID: 9878410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native chemical ligation applied to the synthesis and bioengineering of circular peptides and proteins.
    Clark RJ; Craik DJ
    Biopolymers; 2010; 94(4):414-22. PubMed ID: 20593458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides.
    Tam JP; Lu YA; Yang JL; Chiu KW
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8913-8. PubMed ID: 10430870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1.
    Daly NL; Love S; Alewood PF; Craik DJ
    Biochemistry; 1999 Aug; 38(32):10606-14. PubMed ID: 10441158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot.
    Colgrave ML; Craik DJ
    Biochemistry; 2004 May; 43(20):5965-75. PubMed ID: 15147180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides.
    Daly NL; Clark RJ; Craik DJ
    J Biol Chem; 2003 Feb; 278(8):6314-22. PubMed ID: 12482862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assignment of the disulfide bonds in napin, a seed storage protein from Brassica napus, using matrix-assisted laser desorption ionization mass spectrometry.
    Gehrig PM; Biemann K
    Pept Res; 1996; 9(6):308-14. PubMed ID: 9048425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disulfide bond-forming reaction using a dimethyl sulfoxide/aqueous HCl system and its application to regioselective two disulfide bond formation.
    Tamamura H; Otaka A; Nakamura J; Okubo K; Koide T; Ikeda K; Ibuka T; Fujii N
    Int J Pept Protein Res; 1995 Apr; 45(4):312-9. PubMed ID: 7601603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom.
    Thakur SS; Balaram P
    Rapid Commun Mass Spectrom; 2007; 21(21):3420-6. PubMed ID: 17902199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of bicyclic organo-peptide hybrids via oxime/intein-mediated macrocyclization followed by disulfide bond formation.
    Smith JM; Hill NC; Krasniak PJ; Fasan R
    Org Biomol Chem; 2014 Feb; 12(7):1135-42. PubMed ID: 24395107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory polypeptides.
    Pallaghy PK; Nielsen KJ; Craik DJ; Norton RS
    Protein Sci; 1994 Oct; 3(10):1833-9. PubMed ID: 7849598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic pentapeptide analogs based on endomorphin-2 structure: cyclization studies using liquid chromatography combined with on-line mass spectrometry and tandem mass spectrometry.
    Piekielna J; Kluczyk A; Perlikowska R; Janecka A
    Peptides; 2014 May; 55():32-40. PubMed ID: 24525024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A.
    Stanger K; Maurer T; Kaluarachchi H; Coons M; Franke Y; Hannoush RN
    FEBS Lett; 2014 Nov; 588(23):4487-96. PubMed ID: 25448598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel method for the synthesis of urea backbone cyclic peptides using new Alloc-protected glycine building units.
    Hurevich M; Tal-Gan Y; Klein S; Barda Y; Levitzki A; Gilon C
    J Pept Sci; 2010 Apr; 16(4):178-85. PubMed ID: 20196085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast-based bioproduction of disulfide-rich peptides and their cyclization via asparaginyl endopeptidases.
    Yap K; Du J; Rehm FBH; Tang SR; Zhou Y; Xie J; Wang CK; de Veer SJ; Lua LHL; Durek T; Craik DJ
    Nat Protoc; 2021 Mar; 16(3):1740-1760. PubMed ID: 33597770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A thioethylalkylamido (TEA) thioester surrogate in the synthesis of a cyclic peptide via a tandem acyl shift.
    Taichi M; Hemu X; Qiu Y; Tam JP
    Org Lett; 2013 Jun; 15(11):2620-3. PubMed ID: 23668312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.