BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 9684901)

  • 1. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.
    Thaller MC; Schippa S; Rossolini GM
    Protein Sci; 1998 Jul; 7(7):1647-52. PubMed ID: 9684901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structure-based proposal for the catalytic mechanism of the bacterial acid phosphatase AphA belonging to the DDDD superfamily of phosphohydrolases.
    Calderone V; Forleo C; Benvenuti M; Thaller MC; Rossolini GM; Mangani S
    J Mol Biol; 2006 Jan; 355(4):708-21. PubMed ID: 16330049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-based identification of inositol monophosphatase-like histidinol-phosphate phosphatases (HisN) in Corynebacterium glutamicum, Actinobacteria, and beyond.
    Kulis-Horn RK; Rückert C; Kalinowski J; Persicke M
    BMC Microbiol; 2017 Jul; 17(1):161. PubMed ID: 28720084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial nonspecific acid phosphohydrolases: physiology, evolution and use as tools in microbial biotechnology.
    Rossolini GM; Schippa S; Riccio ML; Berlutti F; Macaskie LE; Thaller MC
    Cell Mol Life Sci; 1998 Aug; 54(8):833-50. PubMed ID: 9760992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first structure of a bacterial class B Acid phosphatase reveals further structural heterogeneity among phosphatases of the haloacid dehalogenase fold.
    Calderone V; Forleo C; Benvenuti M; Cristina Thaller M; Rossolini GM; Mangani S
    J Mol Biol; 2004 Jan; 335(3):761-73. PubMed ID: 14687572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search.
    Koonin EV; Tatusov RL
    J Mol Biol; 1994 Nov; 244(1):125-32. PubMed ID: 7966317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoesterase domains associated with DNA polymerases of diverse origins.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1998 Aug; 26(16):3746-52. PubMed ID: 9685491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purple acid phosphatases from bacteria: similarities to mammalian and plant enzymes.
    Schenk G; Korsinczky ML; Hume DA; Hamilton S; DeJersey J
    Gene; 2000 Sep; 255(2):419-24. PubMed ID: 11024303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of mammalian-like purple acid phosphatases in a wide range of plants.
    Schenk G; Guddat LW; Ge Y; Carrington LE; Hume DA; Hamilton S; de Jersey J
    Gene; 2000 May; 250(1-2):117-25. PubMed ID: 10854785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MDP-1 is a new and distinct member of the haloacid dehalogenase family of aspartate-dependent phosphohydrolases.
    Selengut JD
    Biochemistry; 2001 Oct; 40(42):12704-11. PubMed ID: 11601995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved proline residues near the N-terminus are important for enzymatic activity of class A bacterial acid phosphatases.
    Ansai T; Chen X; Barik S; Takehara T
    Arch Biochem Biophys; 2002 Dec; 408(1):144-6. PubMed ID: 12485613
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification of a novel phosphatase sequence motif.
    Stukey J; Carman GM
    Protein Sci; 1997 Feb; 6(2):469-72. PubMed ID: 9041652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif.
    Collet JF; Stroobant V; Pirard M; Delpierre G; Van Schaftingen E
    J Biol Chem; 1998 Jun; 273(23):14107-12. PubMed ID: 9603909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new family of phosphoinositide phosphatases in microorganisms: identification and biochemical analysis.
    Beresford NJ; Saville C; Bennett HJ; Roberts IS; Tabernero L
    BMC Genomics; 2010 Aug; 11():457. PubMed ID: 20678187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence, structural, functional, and phylogenetic analyses of three glycosidase families.
    Mian IS
    Blood Cells Mol Dis; 1998 Jun; 24(2):83-100. PubMed ID: 9779294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a phosphatase secreted by Staphylococcus aureus strain 154, a new member of the bacterial class C family of nonspecific acid phosphatases.
    du Plessis EM; Theron J; Joubert L; Lotter T; Watson TG
    Syst Appl Microbiol; 2002 Apr; 25(1):21-30. PubMed ID: 12086184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human HAD phosphatases: structure, mechanism, and roles in health and disease.
    Seifried A; Schultz J; Gohla A
    FEBS J; 2013 Jan; 280(2):549-71. PubMed ID: 22607316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying bacterial and archaeal homologs of pentameric ligand-gated ion channel (pLGIC) family using domain-based and alignment-based approaches.
    Rendon G; Kantorovitz MR; Tilson JL; Jakobsson E
    Channels (Austin); 2011; 5(4):325-43. PubMed ID: 21918370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread presence of "bacterial-like" PPP phosphatases in eukaryotes.
    Andreeva AV; Kutuzov MA
    BMC Evol Biol; 2004 Nov; 4():47. PubMed ID: 15555063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved sequence pattern in a wide variety of phosphoesterases.
    Koonin EV
    Protein Sci; 1994 Feb; 3(2):356-8. PubMed ID: 8003970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.