These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 9684901)

  • 21. Identification of protein-tyrosine phosphatases in Archaea.
    Stravopodis DJ; Kyrpides NC
    J Mol Evol; 1999 May; 48(5):625-7. PubMed ID: 10198128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily.
    Leonard CJ; Aravind L; Koonin EV
    Genome Res; 1998 Oct; 8(10):1038-47. PubMed ID: 9799791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure.
    York JD; Ponder JW; Majerus PW
    Proc Natl Acad Sci U S A; 1995 May; 92(11):5149-53. PubMed ID: 7761465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutation of the conserved domains of two inositol polyphosphate 5-phosphatases.
    Jefferson AB; Majerus PW
    Biochemistry; 1996 Jun; 35(24):7890-4. PubMed ID: 8672490
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The crystal structure of Arabidopsis VSP1 reveals the plant class C-like phosphatase structure of the DDDD superfamily of phosphohydrolases.
    Chen Y; Wei J; Wang M; Shi Z; Gong W; Zhang M
    PLoS One; 2012; 7(11):e49421. PubMed ID: 23166664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human L-3-phosphoserine phosphatase: sequence, expression and evidence for a phosphoenzyme intermediate.
    Collet JF; Gerin I; Rider MH; Veiga-da-Cunha M; Van Schaftingen E
    FEBS Lett; 1997 May; 408(3):281-4. PubMed ID: 9188776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.
    Uhrig RG; Kerk D; Moorhead GB
    Plant Physiol; 2013 Dec; 163(4):1829-43. PubMed ID: 24108212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Close evolutionary relatedness of alpha-amylases from Archaea and plants.
    Janecek S; Lévêque E; Belarbi A; Haye B
    J Mol Evol; 1999 Apr; 48(4):421-6. PubMed ID: 10079280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conserved domains and evolution of secreted phospholipases A(2).
    Nevalainen TJ; Cardoso JC; Riikonen PT
    FEBS J; 2012 Feb; 279(4):636-49. PubMed ID: 22177112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.
    Iyer LM; Makarova KS; Koonin EV; Aravind L
    Nucleic Acids Res; 2004; 32(17):5260-79. PubMed ID: 15466593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication.
    Koonin EV
    Nucleic Acids Res; 1993 Jun; 21(11):2541-7. PubMed ID: 8332451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new domain family in the superfamily of alkaline phosphatases.
    Bhadra R; Srinivasan N; Pandit SB
    In Silico Biol; 2005; 5(4):379-87. PubMed ID: 16268782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues.
    Ponting CP; Kerr ID
    Protein Sci; 1996 May; 5(5):914-22. PubMed ID: 8732763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutational analysis of baculovirus phosphatase identifies structural residues important for triphosphatase activity in vitro and in vivo.
    Martins A; Shuman S
    Biochemistry; 2002 Nov; 41(45):13403-9. PubMed ID: 12416985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The p-type ATPase superfamily.
    Chan H; Babayan V; Blyumin E; Gandhi C; Hak K; Harake D; Kumar K; Lee P; Li TT; Liu HY; Lo TC; Meyer CJ; Stanford S; Zamora KS; Saier MH
    J Mol Microbiol Biotechnol; 2010; 19(1-2):5-104. PubMed ID: 20962537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain.
    Hofmann K; Bucher P; Kajava AV
    J Mol Biol; 1998 Sep; 282(1):195-208. PubMed ID: 9733650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Eukaryote-like serine/threonine kinases and phosphatases in bacteria.
    Pereira SF; Goss L; Dworkin J
    Microbiol Mol Biol Rev; 2011 Mar; 75(1):192-212. PubMed ID: 21372323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From phosphatases to vanadium peroxidases: a similar architecture of the active site.
    Hemrika W; Renirie R; Dekker HL; Barnett P; Wever R
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2145-9. PubMed ID: 9122162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean.
    Schenk G; Ge Y; Carrington LE; Wynne CJ; Searle IR; Carroll BJ; Hamilton S; de Jersey J
    Arch Biochem Biophys; 1999 Oct; 370(2):183-9. PubMed ID: 10510276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.