These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9684901)

  • 41. Partial characterization of the CD45 phosphatase cDNA in the owl monkey (Aotus vociferans).
    Montoya GE; Vernot JP; Patarroyo ME
    Am J Primatol; 2002 May; 57(1):1-11. PubMed ID: 11977121
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings.
    Cross M; Lepage R; Rajan S; Biberacher S; Young ND; Kim BN; Coster MJ; Gasser RB; Kim JS; Hofmann A
    FASEB J; 2017 Mar; 31(3):920-926. PubMed ID: 27864376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The human and rat forms of multiple inositol polyphosphate phosphatase: functional homology with a histidine acid phosphatase up-regulated during endochondral ossification.
    Caffrey JJ; Hidaka K; Matsuda M; Hirata M; Shears SB
    FEBS Lett; 1999 Jan; 442(1):99-104. PubMed ID: 9923613
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity.
    Romá-Mateo C; Ríos P; Tabernero L; Attwood TK; Pulido R
    J Mol Biol; 2007 Dec; 374(4):899-909. PubMed ID: 17976645
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CREST--a large and diverse superfamily of putative transmembrane hydrolases.
    Pei J; Millay DP; Olson EN; Grishin NV
    Biol Direct; 2011 Jul; 6():37. PubMed ID: 21733186
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparative analysis of three classes of bacterial non-specific Acid phosphatases and archaeal phosphoesterases: evolutionary perspective.
    U Gandhi N; B Chandra S
    Acta Inform Med; 2012 Sep; 20(3):167-73. PubMed ID: 23322973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic alpha-mannosyltransferases.
    Geremia RA; Petroni EA; Ielpi L; Henrissat B
    Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):133-8. PubMed ID: 8761462
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses.
    Koonin EV
    Nucleic Acids Res; 1993 Oct; 21(20):4847. PubMed ID: 8233837
    [No Abstract]   [Full Text] [Related]  

  • 49. XDOM, a graphical tool to analyse domain arrangements in any set of protein sequences.
    Gouzy J; Eugéne P; Greene EA; Kahn D; Corpet F
    Comput Appl Biosci; 1997 Dec; 13(6):601-8. PubMed ID: 9475988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase.
    Jedrzejas MJ
    Prog Biophys Mol Biol; 2000; 73(2-4):263-87. PubMed ID: 10958932
    [No Abstract]   [Full Text] [Related]  

  • 51. The histidine phosphatase superfamily: structure and function.
    Rigden DJ
    Biochem J; 2008 Jan; 409(2):333-48. PubMed ID: 18092946
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.
    Kerk D; Uhrig RG; Moorhead GB
    Plant Signal Behav; 2013; 8(12):e27365. PubMed ID: 24675170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.
    Anantharaman V; Aravind L
    Genome Biol; 2003; 4(2):R11. PubMed ID: 12620121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glycogen synthase: towards a minimum catalytic unit?
    Cid E; Geremia RA; Guinovart JJ; Ferrer JC
    FEBS Lett; 2002 Sep; 528(1-3):5-11. PubMed ID: 12297270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for a family of archaeal ATPases.
    Koonin EV
    Science; 1997 Mar; 275(5305):1489-90. PubMed ID: 9045616
    [No Abstract]   [Full Text] [Related]  

  • 56. Bacterial and bacteriophage protein phosphatases.
    Koonin EV
    Mol Microbiol; 1993 May; 8(4):785-6. PubMed ID: 8392657
    [No Abstract]   [Full Text] [Related]  

  • 57. The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling.
    Ranganathan S; Simpson KJ; Shaw DC; Nicholas KR
    J Mol Graph Model; 1999 Apr; 17(2):106-13, 134-6. PubMed ID: 10680116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Developing robust protein analysis profiles to identify bacterial acid phosphatases in genomes and metagenomic libraries.
    Udaondo Z; Duque E; Daddaoua A; Caselles C; Roca A; Pizarro-Tobias P; Ramos JL
    Environ Microbiol; 2020 Aug; 22(8):3561-3571. PubMed ID: 32564477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of coenzyme M biosynthetic 2-phosphosulfolactate phosphatase. A member of a new class of Mg(2+)-dependent acid phosphatases.
    Graham DE; Graupner M; Xu H; White RH
    Eur J Biochem; 2001 Oct; 268(19):5176-88. PubMed ID: 11589710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural units important for activity of a novel-type phosphoserine phosphatase from Hydrogenobacter thermophilus TK-6 revealed by crystal structure analysis.
    Chiba Y; Horita S; Ohtsuka J; Arai H; Nagata K; Igarashi Y; Tanokura M; Ishii M
    J Biol Chem; 2013 Apr; 288(16):11448-58. PubMed ID: 23479726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.