These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 9685202)
1. Spectral sensitivity of melatonin synthesis suppression in Xenopus eyecups. Cahill GM; Parsons SE; Besharse JC Vis Neurosci; 1998; 15(3):499-502. PubMed ID: 9685202 [TBL] [Abstract][Full Text] [Related]
2. Light-sensitive melatonin synthesis by Xenopus photoreceptors after destruction of the inner retina. Cahill GM; Besharse JC Vis Neurosci; 1992 May; 8(5):487-90. PubMed ID: 1586650 [TBL] [Abstract][Full Text] [Related]
3. Light-evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light. Besharse JC; Witkovsky P Vis Neurosci; 1992 Mar; 8(3):243-9. PubMed ID: 1547160 [TBL] [Abstract][Full Text] [Related]
4. Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. Pierce ME; Besharse JC J Gen Physiol; 1985 Nov; 86(5):671-89. PubMed ID: 2999294 [TBL] [Abstract][Full Text] [Related]
5. Modulation of rhythmic melatonin synthesis in Xenopus retinal photoreceptors by cyclic AMP. Hasegawa M; Cahill GM Brain Res; 1999 Apr; 824(2):161-7. PubMed ID: 10196446 [TBL] [Abstract][Full Text] [Related]
6. Resetting the circadian clock in cultured Xenopus eyecups: regulation of retinal melatonin rhythms by light and D2 dopamine receptors. Cahill GM; Besharse JC J Neurosci; 1991 Oct; 11(10):2959-71. PubMed ID: 1682423 [TBL] [Abstract][Full Text] [Related]
7. Cyclic AMP resets the circadian clock in cultured Xenopus retinal photoreceptor layers. Hasegawa M; Cahill GM J Neurochem; 1998 Apr; 70(4):1523-31. PubMed ID: 9523569 [TBL] [Abstract][Full Text] [Related]
8. High potassium treatment resets the circadian oscillator in Xenopus retinal photoreceptors. Hasegawa M; Cahill GM J Biol Rhythms; 2004 Jun; 19(3):208-15. PubMed ID: 15155007 [TBL] [Abstract][Full Text] [Related]
9. Melatonin and rhythmic photoreceptor metabolism: melatonin-induced cone elongation is blocked at high light intensity. Pierce ME; Besharse JC Brain Res; 1987 Mar; 405(2):400-4. PubMed ID: 3567617 [TBL] [Abstract][Full Text] [Related]
10. Ontogeny of circadian and light regulation of melatonin release in Xenopus laevis embryos. Green CB; Liang MY; Steenhard BM; Besharse JC Brain Res Dev Brain Res; 1999 Oct; 117(1):109-16. PubMed ID: 10536238 [TBL] [Abstract][Full Text] [Related]
11. Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Ziv L; Tovin A; Strasser D; Gothilf Y Exp Eye Res; 2007 Jan; 84(1):92-9. PubMed ID: 17067577 [TBL] [Abstract][Full Text] [Related]
12. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. Thapan K; Arendt J; Skene DJ J Physiol; 2001 Aug; 535(Pt 1):261-7. PubMed ID: 11507175 [TBL] [Abstract][Full Text] [Related]
13. Circadian regulation of retinomotor movements: II. The role of GABA in the regulation of cone position. Pierce ME; Besharse JC J Comp Neurol; 1988 Apr; 270(2):279-87. PubMed ID: 3379159 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of toad rods: Dependence on wave-length and background illumination. Fain GL J Physiol; 1976 Sep; 261(1):71-101. PubMed ID: 825637 [TBL] [Abstract][Full Text] [Related]
17. Direct modulation of rod photoreceptor responsiveness through a Mel(1c) melatonin receptor in transgenic Xenopus laevis retina. Wiechmann AF; Vrieze MJ; Dighe R; Hu Y Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4522-31. PubMed ID: 14507901 [TBL] [Abstract][Full Text] [Related]
18. Ontogenetic development of S-antigen- and rod-opsin immunoreactions in retinal and pineal photoreceptors of Xenopus laevis in relation to the onset of melatonin-dependent color-change mechanisms. Korf B; Rollag MD; Korf HW Cell Tissue Res; 1989 Nov; 258(2):319-29. PubMed ID: 2531037 [TBL] [Abstract][Full Text] [Related]
19. S-cone contribution to the acute melatonin suppression response in humans. Brown TM; Thapan K; Arendt J; Revell VL; Skene DJ J Pineal Res; 2021 Aug; 71(1):e12719. PubMed ID: 33512714 [TBL] [Abstract][Full Text] [Related]
20. Phototransduction and adaptation in rods, single cones, and twin cones of the striped bass retina: a comparative study. Miller JL; Korenbrot JI Vis Neurosci; 1993; 10(4):653-67. PubMed ID: 8338802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]