BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9685370)

  • 1. The role of calcium-binding sites in S-modulin function.
    Matsuda S; Hisatomi O; Ishino T; Kobayashi Y; Tokunaga F
    J Biol Chem; 1998 Aug; 273(32):20223-7. PubMed ID: 9685370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites.
    Senin II; Fischer T; Komolov KE; Zinchenko DV; Philippov PP; Koch KW
    J Biol Chem; 2002 Dec; 277(52):50365-72. PubMed ID: 12393897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of S-modulin action: binding target and effect of ATP.
    Sato N; Kawamura S
    J Biochem; 1997 Dec; 122(6):1139-45. PubMed ID: 9498557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of carboxyl-terminal charges on S-modulin membrane affinity and inhibition of rhodopsin phosphorylation.
    Matsuda S; Hisatomi O; Tokunaga F
    Biochemistry; 1999 Jan; 38(4):1310-5. PubMed ID: 9930992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin.
    Weiergräber OH; Senin II; Philippov PP; Granzin J; Koch KW
    J Biol Chem; 2003 Jun; 278(25):22972-9. PubMed ID: 12686556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining and characterization of EF-hand mutants of recoverin.
    Alekseev AM; Shulga-Morskoy SV; Zinchenko DV; Shulga-Morskaya SA; Suchkov DV; Vaganova SA; Senin II; Zargarov AA; Lipkin VM; Akhtar M; Philippov PP
    FEBS Lett; 1998 Nov; 440(1-2):116-8. PubMed ID: 9862438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residues of S-modulin responsible for interaction with rhodopsin kinase.
    Tachibanaki S; Nanda K; Sasaki K; Ozaki K; Kawamura S
    J Biol Chem; 2000 Feb; 275(5):3313-9. PubMed ID: 10652319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S-modulin.
    Kawamura S; Tachibanaki S
    Adv Exp Med Biol; 2002; 514():61-8. PubMed ID: 12596915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation.
    Calvert PD; Klenchin VA; Bownds MD
    J Biol Chem; 1995 Oct; 270(41):24127-9. PubMed ID: 7592614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase.
    Senin II; Zargarov AA; Alekseev AM; Gorodovikova EN; Lipkin VM; Philippov PP
    FEBS Lett; 1995 Nov; 376(1-2):87-90. PubMed ID: 8521974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-bound recoverin targets rhodopsin kinase to membranes to inhibit rhodopsin phosphorylation.
    Sanada K; Shimizu F; Kameyama K; Haga K; Haga T; Fukada Y
    FEBS Lett; 1996 Apr; 384(3):227-30. PubMed ID: 8617359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin.
    Kawamura S
    Nature; 1993 Apr; 362(6423):855-7. PubMed ID: 8386803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophosphorylation and ADP regulate the Ca2+-dependent interaction of recoverin with rhodopsin kinase.
    Satpaev DK; Chen CK; Scotti A; Simon MI; Hurley JB; Slepak VZ
    Biochemistry; 1998 Jul; 37(28):10256-62. PubMed ID: 9665733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-sensitive control of rhodopsin phosphorylation in the reconstituted system consisting of photoreceptor membranes, rhodopsin kinase and recoverin.
    Gorodovikova EN; Senin II; Philippov PP
    FEBS Lett; 1994 Oct; 353(2):171-2. PubMed ID: 7926045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recoverin is a zinc-binding protein.
    Permyakov SE; Cherskaya AM; Wasserman LA; Khokhlova TI; Senin II; Zargarov AA; Zinchenko DV; Zernii EY; Lipkin VM; Philippov PP; Uversky VN; Permyakov EA
    J Proteome Res; 2003; 2(1):51-7. PubMed ID: 12643543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of rhodopsin phosphorylation by non-myristoylated recombinant recoverin.
    Kawamura S; Cox JA; Nef P
    Biochem Biophys Res Commun; 1994 Aug; 203(1):121-7. PubMed ID: 8074645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase.
    Chen CK; Inglese J; Lefkowitz RJ; Hurley JB
    J Biol Chem; 1995 Jul; 270(30):18060-6. PubMed ID: 7629115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.