BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9685401)

  • 1. Evidence that partial unwrapping of DNA from nucleosomes facilitates the binding of heat shock factor following DNA replication in yeast.
    Geraghty DS; Sucic HB; Chen J; Pederson DS
    J Biol Chem; 1998 Aug; 273(32):20463-72. PubMed ID: 9685401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell cycle-dependent binding of yeast heat shock factor to nucleosomes.
    Venturi CB; Erkine AM; Gross DS
    Mol Cell Biol; 2000 Sep; 20(17):6435-48. PubMed ID: 10938121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
    Lascaris RF; Groot E; Hoen PB; Mager WH; Planta RJ
    Nucleic Acids Res; 2000 Mar; 28(6):1390-6. PubMed ID: 10684934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains.
    Taylor IC; Workman JL; Schuetz TJ; Kingston RE
    Genes Dev; 1991 Jul; 5(7):1285-98. PubMed ID: 2065977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae.
    Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T
    J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mapping of nucleosomes and regulatory protein binding sites at the Saccharomyces cerevisiae MFA2 gene: a high resolution approach.
    Teng Y; Yu S; Waters R
    Nucleic Acids Res; 2001 Jul; 29(13):E64-4. PubMed ID: 11433040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in the Nucleosome Acidic Patch Regulate Histone Occupancy and Are Important for FACT Binding in
    Hodges AJ; Gloss LM; Wyrick JJ
    Genetics; 2017 Jul; 206(3):1339-1348. PubMed ID: 28468903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element.
    Kroeger PE; Sarge KD; Morimoto RI
    Mol Cell Biol; 1993 Jun; 13(6):3370-83. PubMed ID: 8497256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain.
    Venditti P; Costanzo G; Negri R; Camilloni G
    Biochim Biophys Acta; 1994 Nov; 1219(3):677-89. PubMed ID: 7948025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the Neurospora crassa heat shock factor with the heat shock element during heat shock and different developmental stages.
    Meyer U; Monnerjahn C; Techel D; Rensing L
    FEMS Microbiol Lett; 2000 Apr; 185(2):255-61. PubMed ID: 10754257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.