BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9685901)

  • 1. Vehicle-dependent in situ modification of membrane-controlled drug release.
    Imanidis G; Helbing-Strausak S; Imboden R; Leuenberger H
    J Control Release; 1998 Jan; 51(1):23-34. PubMed ID: 9685901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing vehicle imbibition by a microporous membrane and vehicle viscosity to control release rate of salbutamol.
    Imanidis G; Imboden R
    Eur J Pharm Biopharm; 1999 May; 47(3):283-7. PubMed ID: 10382113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the amphoteric properties of salbutamol on its release rate through a polypropylene control membrane.
    Imboden R; Imanidis G
    Eur J Pharm Biopharm; 1999 Mar; 47(2):161-7. PubMed ID: 10234541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.
    Jhawat V; Gupta S; Saini V
    Drug Deliv; 2016 Nov; 23(9):3573-3581. PubMed ID: 27494650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro delivery of doxycycline hydrochloride based on a porous membrane-based aqueous-organic partitioning system.
    Fan Q; Sirkar KK; Wang Y; Michniak B
    J Control Release; 2004 Aug; 98(3):355-65. PubMed ID: 15312992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of an aqueous-organic partition-based controlled release system using microporous membranes.
    Farrell S; Sirkar KK
    J Control Release; 1999 Sep; 61(3):345-60. PubMed ID: 10477807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment.
    Senapati S; Shukla R; Tripathi YB; Mahanta AK; Rana D; Maiti P
    Mol Pharm; 2018 Feb; 15(2):679-694. PubMed ID: 29298488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo skin permeation and retention studies on chitosan-ibuprofen-gellan ternary nanogel prepared by in situ ionic gelation technique--a tool for controlled transdermal delivery of ibuprofen.
    Abioye AO; Issah S; Kola-Mustapha AT
    Int J Pharm; 2015 Jul; 490(1-2):112-30. PubMed ID: 25997660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Progestin permeation through polymer membranes I: diffusion studies on plasma-soaked membranes.
    Zentner GM; Cardinal JR; Kim SW
    J Pharm Sci; 1978 Oct; 67(10):1347-51. PubMed ID: 702276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan-based controlled porosity osmotic pump for colon-specific delivery system: screening of formulation variables and in vitro investigation.
    Liu H; Yang XG; Nie SF; Wei LL; Zhou LL; Liu H; Tang R; Pan WS
    Int J Pharm; 2007 Mar; 332(1-2):115-24. PubMed ID: 17052871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of film properties to drug release from monolithic films containing adjuvants.
    Jenquin MR; Sarabia RE; Liebowitz SM; McGinity JW
    J Pharm Sci; 1992 Oct; 81(10):983-9. PubMed ID: 1432624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.
    Jämstorp E; Strømme M; Frenning G
    J Pharm Sci; 2011 Oct; 100(10):4338-48. PubMed ID: 21656516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATR-FTIR spectroscopic investigations on the effect of solvents on the permeation of benzoic acid and salicylic acid through silicone membranes.
    Dias M; Raghavan SL; Hadgraft J
    Int J Pharm; 2001 Mar; 216(1-2):51-9. PubMed ID: 11274806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of membrane-solvent-solute interactions on solute permeation in model membranes.
    Dias M; Hadgraft J; Lane ME
    Int J Pharm; 2007 May; 336(1):108-14. PubMed ID: 17204382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of iontophoretic and chemical enhancement on drug delivery. II. Transport across human and murine skin.
    Nolan LM; Corish J; Corrigan OI; Fitzpatrick D
    Int J Pharm; 2007 Aug; 341(1-2):114-24. PubMed ID: 17502130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viscosity of pharmacopeial multimolecular ointment vehicles and pharmaceutical availability of a model therapeutic agent.
    Piechota-Urbańska M; Kołodziejska J; Zgoda MM
    Polim Med; 2007; 37(2):3-19. PubMed ID: 17957945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymeric vehicles for topical delivery and related analytical methods.
    Cho HK; Cho JH; Jeong SH; Cho DC; Yeum JH; Cheong IW
    Arch Pharm Res; 2014 Apr; 37(4):423-34. PubMed ID: 24643380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alcohol enhanced permeation in model membranes. Part I. Thermodynamic and kinetic analyses of membrane permeation.
    Oliveira G; Beezer AE; Hadgraft J; Lane ME
    Int J Pharm; 2010 Jun; 393(1-2):61-7. PubMed ID: 20371274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric prodrug-functionalized polypropylene films for sustained release of salicylic acid.
    Magaña H; Palomino K; Cornejo-Bravo JM; Díaz-Gómez L; Concheiro A; Zavala-Lagunes E; Alvarez-Lorenzo C; Bucio E
    Int J Pharm; 2016 Sep; 511(1):579-585. PubMed ID: 27452418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progestin permeation through polymer membranes II: diffusion studies on hydrogel membranes.
    Zentner GM; Cardinal JR; Kim SW
    J Pharm Sci; 1978 Oct; 67(10):1352-5. PubMed ID: 702277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.