These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9686158)

  • 1. Genetic engineering of baker's and wine yeasts using formaldehyde hyperresistance-mediating plasmids.
    Schmidt M; Cömer A; Grey M; Brendel M
    Braz J Med Biol Res; 1997 Dec; 30(12):1407-14. PubMed ID: 9686158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic characterization of hyperresistance to formaldehyde and 4-nitroquinoline-N-oxide in the yeast Saccharomyces cerevisiae.
    Mack M; Gömpel-Klein P; Haase E; Hietkamp J; Ruhland A; Brendel M
    Mol Gen Genet; 1988 Feb; 211(2):260-5. PubMed ID: 3127660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector YFRp1 allows transformant selection in Saccharomyces cerevisiae via resistance to formaldehyde.
    Wehner EP; Brendel M
    Yeast; 1993 Jul; 9(7):783-5. PubMed ID: 8368012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperresistance to DNA damaging agents in yeast.
    Ruhland A; Brendel M; Haynes RH
    Curr Genet; 1986; 11(3):211-5. PubMed ID: 3129200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of the two genes SNQ and SFA that confer hyperresistance to 4-nitroquinoline-N-oxide and formaldehyde in Saccharomyces cerevisiae.
    Gömpel-Klein P; Mack M; Brendel M
    Curr Genet; 1989 Aug; 16(2):65-74. PubMed ID: 2557161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.
    Nakagawa Y; Ogihara H; Mochizuki C; Yamamura H; Iimura Y; Hayakawa M
    J Biosci Bioeng; 2017 Mar; 123(3):319-326. PubMed ID: 27829542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterologous protein production in yeast.
    Gellissen G; Melber K; Janowicz ZA; Dahlems UM; Weydemann U; Piontek M; Strasser AW; Hollenberg CP
    Antonie Van Leeuwenhoek; 1992 Aug; 62(1-2):79-93. PubMed ID: 1444338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
    Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H
    Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formaldehyde lacks genotoxicity in formaldehyde-hyperresistant strains of the yeast Saccharomyces cerevisiae.
    Wehner E; Brendel M
    Mutat Res; 1993 Sep; 289(1):91-6. PubMed ID: 7689168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAR1 as a new selective marker for genetic engineering of wine yeasts.
    Urakov VN; Mardanov AV; Alexandrov AI; Ruzhitskiy AO; Ravin NV; Kushnirov VV
    J Microbiol Methods; 2023 Nov; 214():106840. PubMed ID: 37820871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation systems of non-Saccharomyces yeasts.
    Wang TT; Choi YJ; Lee BH
    Crit Rev Biotechnol; 2001; 21(3):177-218. PubMed ID: 11599715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing.
    Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T
    J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary engineering to improve Wickerhamomyces subpelliculosus and Kazachstania gamospora for baking.
    Semumu T; Gamero A; Boekhout T; Zhou N
    World J Microbiol Biotechnol; 2022 Jan; 38(3):48. PubMed ID: 35089427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A shuttle vector series for precise genetic engineering of Saccharomyces cerevisiae.
    Gnügge R; Liphardt T; Rudolf F
    Yeast; 2016 Mar; 33(3):83-98. PubMed ID: 26647923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 23S RNA-derived replicon as a 'molecular tag' for monitoring inoculated wine yeast strains.
    Esteban R; Rodríguez-Cousiño N
    Yeast; 2008 May; 25(5):359-69. PubMed ID: 18437705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of baker's yeasts, E. coli and Bacillus hosts for the production of Bacillus subtilis Lipase A.
    Sánchez M; Prim N; Rández-Gil F; Pastor FI; Diaz P
    Biotechnol Bioeng; 2002 May; 78(3):339-45. PubMed ID: 11920450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E; Zuzuarregui A; Ridaura I; Lozano N; del Olmo M
    Int J Food Microbiol; 2009 Mar; 130(2):122-30. PubMed ID: 19217680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the cytochrome c gene from the starch-fermenting yeast Schwanniomyces occidentalis and its expression in Baker's yeast.
    Amegadzie BY; Zitomer RS; Hollenberg CP
    Yeast; 1990; 6(5):429-40. PubMed ID: 2171242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.