These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9686337)

  • 21. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells.
    Grenier S; Sandig M; Mequanint K
    J Biomed Mater Res A; 2007 Sep; 82(4):802-9. PubMed ID: 17326143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in vivo evaluation of (L)-lactide/ε-caprolactone copolymer scaffold to support myoblast growth and differentiation.
    Bandyopadhyay B; Shah V; Soram M; Viswanathan C; Ghosh D
    Biotechnol Prog; 2013; 29(1):197-205. PubMed ID: 23143919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid formation of functional muscle in vitro using fibrin gels.
    Huang YC; Dennis RG; Larkin L; Baar K
    J Appl Physiol (1985); 2005 Feb; 98(2):706-13. PubMed ID: 15475606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of biodegradable polyurethane microfibers for tissue engineering.
    Rockwood DN; Woodhouse KA; Fromstein JD; Chase DB; Rabolt JF
    J Biomater Sci Polym Ed; 2007; 18(6):743-58. PubMed ID: 17623555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A defined system to allow skeletal muscle differentiation and subsequent integration with silicon microstructures.
    Das M; Gregory CA; Molnar P; Riedel LM; Wilson K; Hickman JJ
    Biomaterials; 2006 Aug; 27(24):4374-80. PubMed ID: 16647113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the effect of surface properties on the biocompatibility of polyurethane membranes.
    Lin DT; Young TH; Fang Y
    Biomaterials; 2001 Jun; 22(12):1521-9. PubMed ID: 11374451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for inducing equi-biaxial and uniform strains in elastomeric membranes used as cell substrates.
    Hung CT; Williams JL
    J Biomech; 1994 Feb; 27(2):227-32. PubMed ID: 8132691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle.
    Zhang Y; Cong X; Wang A; Jiang H
    J Anim Sci; 2014 Aug; 92(8):3284-90. PubMed ID: 24948655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of cyclic strain for accelerated skeletal myogenic differentiation of mouse bone marrow-derived mesenchymal stromal cells with cell alignment.
    Egusa H; Kobayashi M; Matsumoto T; Sasaki J; Uraguchi S; Yatani H
    Tissue Eng Part A; 2013 Mar; 19(5-6):770-82. PubMed ID: 23072369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair.
    McDevitt TC; Woodhouse KA; Hauschka SD; Murry CE; Stayton PS
    J Biomed Mater Res A; 2003 Sep; 66(3):586-95. PubMed ID: 12918042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of artificial skeletal muscle tissues by a magnetic force-based tissue engineering technique.
    Yamamoto Y; Ito A; Kato M; Kawabe Y; Shimizu K; Fujita H; Nagamori E; Kamihira M
    J Biosci Bioeng; 2009 Dec; 108(6):538-43. PubMed ID: 19914590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices.
    Shin YC; Lee JH; Jin L; Kim MJ; Kim YJ; Hyun JK; Jung TG; Hong SW; Han DW
    J Nanobiotechnology; 2015 Mar; 13():21. PubMed ID: 25886153
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues.
    Cheng CS; Ran L; Bursac N; Kraus WE; Truskey GA
    Tissue Eng Part A; 2016 Apr; 22(7-8):573-83. PubMed ID: 26891613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of vascular smooth muscle cell function under cyclic mechanical loading in a polyurethane scaffold with optimized porosity.
    Sharifpoor S; Simmons CA; Labow RS; Santerre JP
    Acta Biomater; 2010 Nov; 6(11):4218-28. PubMed ID: 20601230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroactive biomaterial surface engineering effects on muscle cells differentiation.
    Ribeiro S; Gomes AC; Etxebarria I; Lanceros-Méndez S; Ribeiro C
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():868-874. PubMed ID: 30184816
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mechanically enhanced phase separation of sprayed polyurethane scaffolds and their effect on the alignment of fibroblasts.
    Kennedy JP; McCandless SP; Lasher RA; Hitchcock RW
    Biomaterials; 2010 Feb; 31(6):1126-32. PubMed ID: 19878993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2929-38. PubMed ID: 19457460
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineered skeletal muscle tissue networks with controllable architecture.
    Bian W; Bursac N
    Biomaterials; 2009 Mar; 30(7):1401-12. PubMed ID: 19070360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.