BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9686897)

  • 1. Activation of tyrosine hydroxylase by histamine in bovine chromaffin cells.
    Marley PD; Robotis R
    J Auton Nerv Syst; 1998 May; 70(1-2):1-9. PubMed ID: 9686897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histamine-induced increases in cyclic AMP levels in bovine adrenal medullary cells.
    Marley PD; Thomson KA; Jachno K; Johnston MJ
    Br J Pharmacol; 1991 Dec; 104(4):839-46. PubMed ID: 1725765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of tyrosine hydroxylase by pituitary adenylate cyclase-activating polypeptide (PACAP-27) in bovine adrenal chromaffin cells.
    Marley PD; Cheung CY; Thomson KA; Murphy R
    J Auton Nerv Syst; 1996 Sep; 60(3):141-6. PubMed ID: 8912276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of nicotinic responses of bovine adrenal chromaffin cells by the protein kinase C inhibitor, Ro 31-8220.
    Marley PD; Thomson KA
    Br J Pharmacol; 1996 Sep; 119(2):416-22. PubMed ID: 8886429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the histamine receptors in the guinea-pig lung: evidence for relaxant histamine H3 receptors in the trachea.
    Cardell LO; Edvinsson L
    Br J Pharmacol; 1994 Feb; 111(2):445-54. PubMed ID: 7911715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histamine activates tyrosine hydroxylase in bovine adrenal chromaffin cells through a pathway that involves ERK1/2 but not p38 or JNK.
    Cammarota M; Bevilaqua LR; Rostas JA; Dunkley PR
    J Neurochem; 2003 Feb; 84(3):453-8. PubMed ID: 12558965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase A and nicotinic activation of bovine adrenal tyrosine hydroxylase.
    Marley PD; Thomson KA; Bralow RA
    Br J Pharmacol; 1995 Apr; 114(8):1687-93. PubMed ID: 7599937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein phosphorylation in bovine adrenal medullary chromaffin cells: histamine-stimulated phosphorylation of tyrosine hydroxylase.
    Bunn SJ; Harrison SM; Dunkley PR
    J Neurochem; 1992 Jul; 59(1):164-74. PubMed ID: 1351923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H3 receptor-mediated inhibition of intestinal acetylcholine release: pharmacological characterization of signal transduction pathways.
    Blandizzi C; Colucci R; Tognetti M; De Paolis B; Del Tacca M
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Feb; 363(2):193-202. PubMed ID: 11219402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of histamine receptor sub-types regulating prostacyclin release from human endothelial cells.
    Bull HA; Courtney PF; Rustin MH; Dowd PM
    Br J Pharmacol; 1992 Oct; 107(2):276-81. PubMed ID: 1330171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of PKA and PKC in histamine H1 receptor-mediated activation of catecholamine neurotransmitter synthesis.
    Moniri NH; Booth RG
    Neurosci Lett; 2006 Oct; 407(3):249-53. PubMed ID: 16978782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different contributions of voltage-sensitive Ca2+ channels to histamine-induced catecholamine release and tyrosine hydroxylase activation in bovine adrenal chromaffin cells.
    O'Farrell M; Marley PD
    Cell Calcium; 1999 Mar; 25(3):209-17. PubMed ID: 10378082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bizarre receptor mediating stimulatory effect of histamine on cyclic AMP formation in duck pineal gland.
    Nowak JZ; Sek B; Zawilska JB
    Neurosci Lett; 1995 Dec; 202(1-2):65-8. PubMed ID: 8787832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does histamine stimulate cyclic AMP formation in the avian pineal gland via a novel (non-H1, non-H2, non-H3) histamine receptor subtype.
    Nowak JZ; Sek B; D'Souza T; Dryer SE
    Neurochem Int; 1995 Dec; 27(6):519-26. PubMed ID: 8574181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of intracerebroventricular injection of histamine and its related compounds on rectal temperature in mice.
    Chen Z; Sugimoto Y; Kamei C
    Methods Find Exp Clin Pharmacol; 1995 Dec; 17(10):669-75. PubMed ID: 9053587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of protein kinase C in homologous desensitization of histamine-evoked secretory responses in rat chromaffin cells.
    Warashina A
    Brain Res; 1997 Jul; 762(1-2):40-6. PubMed ID: 9262156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histamine H2 receptor-mediated airway goblet cell secretion and its modulation by histamine-degrading enzymes.
    Tamaoki J; Nakata J; Takeyama K; Chiyotani A; Konno K
    J Allergy Clin Immunol; 1997 Feb; 99(2):233-8. PubMed ID: 9042051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiation by apamin of histamine-stimulated catecholamine biosynthesis and tyrosine hydroxylase phosphorylation in cultured bovine adrenal chromaffin cells.
    Kitamura K; Houchi H; Yoshizumi M; Matsumoto K; Oka M
    Tokushima J Exp Med; 1996 Jun; 43(1-2):17-23. PubMed ID: 8885685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caffeine stimulates Ca(2+) entry through store-operated channels to activate tyrosine hydroxylase in bovine chromaffin cells.
    McKenzie S; Marley PD
    Eur J Neurosci; 2002 May; 15(9):1485-92. PubMed ID: 12028358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent, pertussis toxin insensitive inhibition of calcium currents by histamine in bovine adrenal chromaffin cells.
    Currie KP; Fox AP
    J Neurophysiol; 2000 Mar; 83(3):1435-42. PubMed ID: 10712470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.