These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 968725)

  • 21. Post-trauma Lipitor treatment prevents endothelial dysfunction, facilitates neuroprotection, and promotes locomotor recovery following spinal cord injury.
    Pannu R; Christie DK; Barbosa E; Singh I; Singh AK
    J Neurochem; 2007 Apr; 101(1):182-200. PubMed ID: 17217414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuroprotective effects of caspase-3 inhibition on functional recovery and tissue sparing after acute spinal cord injury.
    Citron BA; Arnold PM; Haynes NG; Ameenuddin S; Farooque M; Santacruz K; Festoff BW
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2269-77. PubMed ID: 18827691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats.
    Colak A; Kelten B; Sağmanligil A; Akdemir O; Karaoğlan A; Sahan E; Celik O; Barut S
    J Clin Neurosci; 2008 Jun; 15(6):665-71. PubMed ID: 18343118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacological management of spinal cord injury: current status of drugs designed to augment functional recovery of the injured human spinal cord.
    Greene KA; Marciano FF; Sonntag VK
    J Spinal Disord; 1996 Oct; 9(5):355-66. PubMed ID: 8938603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.
    Wrathall JR; Teng YD; Marriott R
    Exp Neurol; 1997 Jun; 145(2 Pt 1):565-73. PubMed ID: 9217092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FK 506 reduces tissue damage and prevents functional deficit after spinal cord injury in the rat.
    López-Vales R; García-Alías G; Forés J; Udina E; Gold BG; Navarro X; Verdú E
    J Neurosci Res; 2005 Sep; 81(6):827-36. PubMed ID: 16041804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function.
    Guth L; Zhang Z; DiProspero NA; Joubin K; Fitch MT
    Exp Neurol; 1994 Mar; 126(1):76-87. PubMed ID: 8157128
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Basic fibroblast growth factor (bFGF) enhances functional recovery following severe spinal cord injury to the rat.
    Rabchevsky AG; Fugaccia I; Turner AF; Blades DA; Mattson MP; Scheff SW
    Exp Neurol; 2000 Aug; 164(2):280-91. PubMed ID: 10915567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats.
    Pereira JE; Costa LM; Cabrita AM; Couto PA; Filipe VM; Magalhães LG; Fornaro M; Di Scipio F; Geuna S; Maurício AC; Varejão AS
    Exp Neurol; 2009 Nov; 220(1):71-81. PubMed ID: 19665461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental treatments of acute spinal cord injury.
    Ducker TB; Hamit HF
    J Neurosurg; 1969 Jun; 30(6):693-7. PubMed ID: 5819293
    [No Abstract]   [Full Text] [Related]  

  • 31. Beneficial effects of FeTSPP, a peroxynitrite decomposition catalyst, in a mouse model of spinal cord injury.
    Genovese T; Mazzon E; Esposito E; Muià C; Di Paola R; Bramanti P; Cuzzocrea S
    Free Radic Biol Med; 2007 Sep; 43(5):763-80. PubMed ID: 17664140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacologic treatment and evaluation of permanent experimental spinal cord trauma.
    De La Torre JC; Johnson CM; Goode DJ; Mullan S
    Neurology; 1975 Jun; 25(6):508-14. PubMed ID: 1168870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of dexamethasone in the treatment of acute spinal cord injury.
    Kiwerski JE
    Injury; 1993 Aug; 24(7):457-60. PubMed ID: 8406764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of pial incision and steroid administration on experimental spinal cord injury (author's transl)].
    Iwasaki Y; Ito T; Isu T; Tsuru M
    Neurol Med Chir (Tokyo); 1980 Sep; 20(9):965-70. PubMed ID: 6158707
    [No Abstract]   [Full Text] [Related]  

  • 35. The experimental basis for early pharmacological intervention in spinal cord injury.
    Simpson RK; Hsu CY; Dimitrijevic MR
    Paraplegia; 1991 Jul; 29(6):364-72. PubMed ID: 1896216
    [No Abstract]   [Full Text] [Related]  

  • 36. Current status of spinal cord cooling in the treatment of acute spinal cord injury.
    Hansebout RR; Tanner JA; Romero-Sierra C
    Spine (Phila Pa 1976); 1984; 9(5):508-11. PubMed ID: 6495017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined pharmacologic and surgical treatments for acute spinal cord trauma.
    Rucker NC; Lumb WV; Scott RJ
    Ann N Y Acad Sci; 1983; 411():191-9. PubMed ID: 6576694
    [No Abstract]   [Full Text] [Related]  

  • 38. Criteria for valid preclinical trials.
    Hsu CY
    J Neurotrauma; 1992; 9(2):177-9; discussion 179-81. PubMed ID: 1404437
    [No Abstract]   [Full Text] [Related]  

  • 39. Importance of pharmacologic considerations in the evaluation of new treatments for acute spinal cord injury.
    Hall ED
    J Neurotrauma; 1992; 9(2):173-5; discussion 175-6. PubMed ID: 1404436
    [No Abstract]   [Full Text] [Related]  

  • 40. Translational spinal cord injury research: preclinical guidelines and challenges.
    Reier PJ; Lane MA; Hall ED; Teng YD; Howland DR
    Handb Clin Neurol; 2012; 109():411-33. PubMed ID: 23098728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.